A unified framework for alignment and correspondence

This paper casts the problem of 2D point-set alignment and correspondence matching into a unified framework. Our aim in providing this unification is to constrain the recovery of pose parameters using relational constraints provided by the structural arrangement of the points. This structural information is provided by a neighbourhood graph for the points. We characterise the problem using distinct probability distributions for alignment errors and correspondence errors. The utility measure underpinning the work is the cross-entropy between probability distributions for alignment and assignment errors. This statistical framework interleaves the processes of finding point correspondences and estimating the alignment parameters. In the case of correspondence matching, the probability distribution models departures from edge consistency in the matching of the neighbourhood graphs. We investigate two different models for the alignment error process. In the first of these, we study Procrustes alignment. Here we show how the parameters of the similarity transform and the correspondence matches can be located using dual singular value decompositions. The second alignment process uses a point-distribution model. We show how this augmented point-distribution model can be matched to unlabelled point-sets which are subject to both additional clutter and point drop-out. Experimental results using both synthetic and real images are given.

[1]  Edwin R. Hancock,et al.  Structural Graph Matching Using the EM Algorithm and Singular Value Decomposition , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Joachim M. Buhmann,et al.  Distortion Invariant Object Recognition in the Dynamic Link Architecture , 1993, IEEE Trans. Computers.

[3]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[4]  Michael Brady,et al.  Feature-based correspondence: an eigenvector approach , 1992, Image Vis. Comput..

[5]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Edwin R. Hancock,et al.  Corner detection via topographic analysis of vector-potential , 1999, Pattern Recognit. Lett..

[7]  Michael I. Jordan,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1994, Neural Computation.

[8]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[9]  Edwin R. Hancock,et al.  Structural Matching by Discrete Relaxation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Michael Werman,et al.  Similarity and Affine Invariant Distances Between 2D Point Sets , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  H. C. Longuet-Higgins,et al.  An algorithm for associating the features of two images , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[12]  Shinji Umeyama,et al.  An Eigendecomposition Approach to Weighted Graph Matching Problems , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Edwin R. Hancock,et al.  Graph Matching With a Dual-Step EM Algorithm , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Edwin R. Hancock,et al.  Iterative Procrustes alignment with the EM algorithm , 2002, Image Vis. Comput..

[15]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[16]  Shinji Umeyama Parameterized Point Pattern Matching and Its Application to Recognition of Object Families , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Steven Gold,et al.  A Graduated Assignment Algorithm for Graph Matching , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Olivier D. Faugeras,et al.  Representing Stereo Data with the Delaunay Triangulation , 1990, Artif. Intell..

[19]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Yali Amit,et al.  Graphical Templates for Model Registration , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[22]  Philip David,et al.  SoftPOSIT: Simultaneous Pose and Correspondence Determination , 2002, ECCV.

[23]  Alex Pentland,et al.  Closed-form solutions for physically-based shape modeling and recognition , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  Anand Rangarajan,et al.  The Softassign Procrustes Matching Algorithm , 1997, IPMI.

[25]  Michael I. Jordan,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1994 .

[26]  Frédéric Jurie,et al.  Solution of the Simultaneous Pose and Correspondence Problem Using Gaussian Error Model , 1999, Comput. Vis. Image Underst..

[27]  M. Brady,et al.  Rejecting outliers and estimating errors in an orthogonal-regression framework , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[28]  S. Ullman,et al.  The interpretation of visual motion , 1977 .