Hierarchical B-spline complexes of discrete differential forms
暂无分享,去创建一个
John A. Evans | Michael A. Scott | Kendrick M. Shepherd | M. Scott | R. Vázquez | Derek C. Thomas | Rafael Vazquez | Kendrick Shepherd | Derek Thomas
[1] Martin Costabel,et al. Computation of resonance frequencies for Maxwell equations in non-smooth domains , 2003 .
[2] Thomas de Quincey. [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.
[3] John A. Evans,et al. Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines. , 2017, Computer methods in applied mechanics and engineering.
[4] Bert Jüttler,et al. Adaptively refined multi-patch B-splines with enhanced smoothness , 2016, Appl. Math. Comput..
[5] Salvatore Caorsi,et al. Mathematical Modelling and Numerical Analysis Spurious-free Approximations of Electromagnetic Eigenproblems by Means of Nedelec-type Elements , 2022 .
[6] D. Arnold. Finite Element Exterior Calculus , 2018 .
[7] John A. Evans,et al. Isogeometric divergence-conforming b-splines for the darcy-stokes-brinkman equations , 2013 .
[8] Giancarlo Sangalli,et al. Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..
[9] R. Ho. Algebraic Topology , 2022 .
[10] D. Arnold,et al. Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.
[11] Ahmed Ratnani,et al. An Arbitrary High-Order Spline Finite Element Solver for the Time Domain Maxwell Equations , 2012, J. Sci. Comput..
[12] K. Berenhaut,et al. Applied Mathematical Sciences , 2012 .
[13] John A. Evans,et al. Isogeometric Analysis , 2010 .
[14] Sebastian Schöps,et al. Isogeometric simulation of Lorentz detuning in superconducting accelerator cavities , 2014, Comput. Phys. Commun..
[15] Paul W. Gross,et al. Electromagnetic Theory and Computation: Examples and Tables , 2004 .
[16] Wulf G. Dettmer,et al. A stabilised immersed boundary method on hierarchical b-spline grids , 2016 .
[17] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[18] Alan Demlow,et al. A Posteriori Error Estimates for Finite Element Exterior Calculus: The de Rham Complex , 2012, Foundations of Computational Mathematics.
[19] Xin Li,et al. Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.
[20] A. Bossavit. Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism , 1988 .
[21] Gunar Matthies,et al. Mass conservation of finite element methods for coupled flow-transport problems , 2007, Int. J. Comput. Sci. Math..
[22] Trond Kvamsdal,et al. Divergence-conforming discretization for Stokes problem on locally refined meshes using LR B-splines , 2015 .
[23] Carlotta Giannelli,et al. Adaptive isogeometric methods with hierarchical splines: Optimality and convergence rates , 2017 .
[24] Chennakesava Kadapa,et al. A fictitious domain/distributed Lagrange multiplier based fluid–structure interaction scheme with hierarchical B-Spline grids , 2016 .
[25] Anil N. Hirani,et al. Discrete exterior calculus , 2005, math/0508341.
[26] Cv Clemens Verhoosel,et al. Goal-adaptive Isogeometric Analysis with hierarchical splines , 2014 .
[27] Michael A. Scott,et al. Isogeometric spline forests , 2014 .
[28] Giancarlo Sangalli,et al. Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.
[29] Giancarlo Sangalli,et al. IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .
[30] Luca de Meo,et al. H1 , 2019, Springer Reference Medizin.
[31] G. Sangalli,et al. Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .
[32] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[33] John A. Evans,et al. ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .
[34] Leszek Demkowicz,et al. H1, H(curl) and H(div)-conforming projection-based interpolation in three dimensionsQuasi-optimal p-interpolation estimates , 2005 .
[35] Carlotta Giannelli,et al. Complexity of hierarchical refinement for a class of admissible mesh configurations , 2015, Comput. Aided Geom. Des..
[36] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[37] Giancarlo Sangalli,et al. Anisotropic NURBS approximation in isogeometric analysis , 2012 .
[38] Daniele Boffi. Approximation of eigenvalues in mixed form, Discrete Compactness Property, and application to hp mixed finite elements , 2007 .
[39] Rafael Vázquez,et al. Algorithms for the implementation of adaptive isogeometric methods using hierarchical splines , 2016 .
[40] Paul W. Gross,et al. Electromagnetic Theory and Computation: A Topological Approach , 2004 .
[41] Morton Brown. Locally Flat Imbeddings of Topological Manifolds , 1962 .
[42] B. Jüttler,et al. Inf–sup stability of isogeometric Taylor–Hood and Sub-Grid methods for the Stokes problem with hierarchical splines , 2018 .
[43] Eitan Grinspun,et al. CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..
[44] Yuri Bazilevs,et al. Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows , 2017 .
[45] Bert Jüttler,et al. On the completeness of hierarchical tensor-product B-splines , 2014, J. Comput. Appl. Math..
[46] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[47] John A. Evans,et al. An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .
[48] Bernard Mourrain,et al. Dimensions and bases of hierarchical tensor-product splines , 2014, J. Comput. Appl. Math..
[49] Daniel Boffi,et al. A note on the deRham complex and a discrete compactness property , 1999, Appl. Math. Lett..
[50] Carlotta Giannelli,et al. Adaptive isogeometric methods with hierarchical splines: error estimator and convergence , 2015, 1502.00565.
[51] Anil N. Hirani,et al. Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus , 2008, ArXiv.
[52] O. Botella,et al. BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .
[53] Ana Alonso Rodríguez,et al. Eddy Current Approximation of Maxwell Equations , 2010 .
[54] D. Arnold,et al. Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.
[55] John A. Evans,et al. Discrete spectrum analyses for various mixed discretizations of the Stokes eigenproblem , 2012 .
[56] Thomas J. R. Hughes,et al. Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..
[57] K. Bathe,et al. The inf-sup test , 1993 .
[58] Giancarlo Sangalli,et al. Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations , 2012, J. Comput. Phys..
[59] Markus Kästner,et al. Bézier extraction and adaptive refinement of truncated hierarchical NURBS , 2016 .