On a Mass Spectrometric Angular Distribution Study of the Effusion of the Potassium Chloride Vapor System from Cylindrical Orifices

A mass spectrometric investigation has been made of the angular number distributions of the KCl and K2Cl2 molecules effusing from cylindrical orifices with geometries of L/R = 1−4 at temperatures of 565, 585, and 605°C. It was found that the angular distributions for neither the KCl nor the K2Cl2 molecule agrees with the predictions of the classical Clausing model. The angular distribution of the monomer is more diffuse than predicted by theory, whereas the dimer distribution is more highly focused than the experimental monomer distribution or the theoretical distribution. For a given orifice geometry, progressive defocusing of both beams was observed as the temperature was increased. None of the presently proposed theoretical models is capable of predicting the experimental angular distributions. However, substantial evidence exists to suggest that dissociation of the dimer on the orifice walls is an important factor.

[1]  R. Grimley,et al.  A Rotary Molecular Effusion Source for High Temperature Vaporization Studies , 1971 .

[2]  E. Wenaas Equilibrium Cosine Law and Scattering Symmetry at the Gas–Surface Interface , 1971 .

[3]  K. Wang,et al.  Effusion. VI. Velocity Distributions of Gaseous CsCl from Near‐Ideal and Right‐Circular Cylindrical Orifices , 1970 .

[4]  R. Stickney,et al.  Velocity Distribution Measurements for Near-Free Molecule Flow through an Orifice , 1970 .

[5]  W. Winterbottom Spatial Distributions of the Vapor Species in Alkali Halide Effusion Beams , 1969 .

[6]  R. Grimley,et al.  Technique for the calibration of high-temperature mass spectrometers , 1969 .

[7]  J. W. Ward Study of Some of the Parameters Affecting Knudsen Effusion. V. Free‐Path Considerations in Small Knudsen Cells , 1968 .

[8]  T. Phipps,et al.  Effusion. II. Angular Number Distributions of Gaseous Cadmium from a Right-Circular Cylindrical Orifice into Vacuum , 1968 .

[9]  W. Winterbottom Vapor–Solid Interactions and the Effusion Oven. II. Spatial Distribution of an Effusion Flux , 1968 .

[10]  J. W. Ward Study of Some of the Parameters Affecting Knudsen Effusion. III. The Vapor Pressure of Gold , 1967 .

[11]  W. Winterbottom Vapor—Solid Interactions and the Effusion Oven. I. The Total Effusion Current through a Cylindrical Orifice , 1967 .

[12]  J. W. Ward,et al.  Study of Some of the Parameters Affecting Knudsen Effusion. II. A Monte Carlo Computer Analysis of Parameters Deduced from Experiment , 1967 .

[13]  J. W. Ward,et al.  Study of Some of the Parameters Affecting Knudsen Effusion. I. Experimental Tests of the Validity of the Cosine Law as a Function of Cell and Sample Geometrics and Materials , 1967 .

[14]  R. Grimley,et al.  Use of the Mass Spectrometer in Angular‐Distribution Studies of Molecular Effusion , 1967 .

[15]  S. Yamamoto,et al.  Angular Distribution of Flow from Orifices and Tubes at High Knudsen Numbers , 1967 .

[16]  L. Holland,et al.  Measurement of the Distribution and Total Rate of Molecular Flow through High‐Vacuum Components , 1966 .

[17]  L. Holland,et al.  Experiments on the molecular flow of gas through tubes and vacuum system components using a B.A. ionization gauge , 1966 .

[18]  R. Grimley,et al.  High Vacuum Micrometer , 1966 .

[19]  K. D. Carlson,et al.  Molecular and Hydrodynamical Effusion of Mercury Vapor from Knudsen Cells , 1963 .

[20]  J. Hirth,et al.  Diffusional Contribution to the Total Flow from a Knudsen Cell , 1962 .

[21]  Raymond J. Seeger,et al.  Lectures in Theoretical Physics , 1962 .

[22]  H. Liepmann,et al.  Gaskinetics and gasdynamics of orifice flow , 1961, Journal of Fluid Mechanics.

[23]  J. Giordmaine,et al.  Molecular Beam Formation by Long Parallel Tubes , 1960 .

[24]  I. Amdur,et al.  Kinetic Theory of Gases , 1959 .

[25]  S. Brown,et al.  1956 National Symposium on Vacuum Technology Transactions , 1958 .

[26]  A. S. Berman,et al.  Flow of Noble Gases at Low Pressures through Porous Media and Capillaries , 1958 .

[27]  R. Miller,et al.  Velocity Distributions in Potassium and Thallium Atomic Beams , 1955 .

[28]  W. H. Bennett,et al.  Theory of the Aurora Based on Magnetic Self-Focusing of Solar Ion Streams , 1954 .

[29]  O. C. Simpson,et al.  The Free Fall of Atoms and the Measurement of the Velocity Distribution in a Molecular Beam of Cesium Atoms , 1947 .

[30]  M. Strutt,et al.  Die folgen einiger elektronenträgheitseffekte in elektronenrohren II: Anwendungen und numerische ergebnisse , 1942 .

[31]  P. Clausing,et al.  Über die Strömung sehr verdünnter Gase durch Röhren von beliebiger Länge , 1932 .

[32]  P. Clausing Über die Strahlformung bei der Molekularströmung , 1930 .

[33]  H. Mayer Über die Gültigkeitsgrenzen des Kosinusgesetzes der Molekularstrahlung , 1929 .

[34]  T. H. Johnson The Production and Measurement of Molecular Beams , 1926 .

[35]  M. Knudsen,et al.  Das Cosinusgesetz in der kinetischen Gastheorie , 1916 .

[36]  W. Gaede,et al.  Die äußere Reibung der Gase , 1913 .

[37]  M. Knudsen Molekularstrmung des Wasserstoffs durch Rhren und das Hitzdrahtmanometer , 1911 .

[38]  M. Smoluchowski Zur kinetischen Theorie der Transpiration und Diffusion verdünnter Gase , 1910 .

[39]  M. Knudsen,et al.  Die Molekularströmung der Gase durch Offnungen und die Effusion , 1909 .

[40]  M. Knudsen Die Gesetze der Molekularstrmung und der inneren Reibungsstrmung der Gase durch Rhren , 1909 .