Codimensional matrix pairing perspective of BYY harmony learning: hierarchy of bilinear systems, joint decomposition of data-covariance, and applications of network biology

[1]  Lei Xu,et al.  Learning Algorithms for RBF Functions and Subspace Based Functions , 2012 .

[2]  Lei Xu,et al.  Parameterizations make different model selections: Empirical findings from factor analysis , 2011 .

[3]  Xiaofei He,et al.  Tangent space learning and generalization , 2011 .

[4]  Lei Xu,et al.  A binary matrix factorization algorithm for protein complex prediction , 2010, 2010 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW).

[5]  Erkki Oja,et al.  Automatic Rank Determination in Projective Nonnegative Matrix Factorization , 2010, LVA/ICA.

[6]  L. Xu Bayesian Ying-Yang system, best harmony learning, and five action circling , 2010 .

[7]  David J. Reiss,et al.  Learning transcriptional networks from the integration of ChIP-chip and expression data in a non-parametric model , 2010, Bioinform..

[8]  Lei Xu,et al.  Machine learning problems from optimization perspective , 2010, J. Glob. Optim..

[9]  Jorma Rissanen Basics of estimation , 2010 .

[10]  Javier De Las Rivas,et al.  Protein–Protein Interactions Essentials: Key Concepts to Building and Analyzing Interactome Networks , 2010, PLoS Comput. Biol..

[11]  Shuhei Kimura,et al.  Inferring cluster-based networks from differently stimulated multiple time-course gene expression data , 2010, Bioinform..

[12]  Hyun Uk Kim,et al.  Data integration and analysis of biological networks. , 2010, Current opinion in biotechnology.

[13]  Jörg Schultz,et al.  Protein Interaction Networks—More Than Mere Modules , 2008, PLoS Comput. Biol..

[14]  Hongyu Zhao,et al.  Reconstructing transcriptional regulatory networks through genomics data , 2009, Statistical methods in medical research.

[15]  Emilio Soria Olivas,et al.  Handbook of Research on Machine Learning Applications and Trends : Algorithms , Methods , and Techniques , 2009 .

[16]  Zhi-Hua Zhou,et al.  When semi-supervised learning meets ensemble learning , 2009, MCS.

[17]  Ali Taylan Cemgil,et al.  Bayesian Inference for Nonnegative Matrix Factorisation Models , 2009, Comput. Intell. Neurosci..

[18]  Lei Xu,et al.  Canonical Dual Approach to Binary Factor Analysis , 2009, ICA.

[19]  Aapo Hyvärinen,et al.  Learning Natural Image Structure with a Horizontal Product Model , 2009, ICA.

[20]  Shun-ichi Amari,et al.  Combining Classifiers and Learning Mixture-of-Experts , 2009, Encyclopedia of Artificial Intelligence.

[21]  Jing Hua,et al.  Non-negative matrix factorization for semi-supervised data clustering , 2008, Knowledge and Information Systems.

[22]  Bonnie Berger,et al.  Global alignment of multiple protein interaction networks with application to functional orthology detection , 2008, Proceedings of the National Academy of Sciences.

[23]  P. Dooren,et al.  Non-negative matrix factorization with fixed row and column sums , 2008 .

[24]  Lei Xu,et al.  Bayesian Ying Yang System, Best Harmony Learning, and Gaussian Manifold Based Family , 2008, WCCI.

[25]  Hyunsoo Kim,et al.  Nonnegative Matrix Factorization Based on Alternating Nonnegativity Constrained Least Squares and Active Set Method , 2008, SIAM J. Matrix Anal. Appl..

[26]  Satoru Miyano,et al.  Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models , 2008, Bioinform..

[27]  Yoonsuck Choe,et al.  Structural systems identification of genetic regulatory networks , 2008, Bioinform..

[28]  Jingtai Han Understanding biological functions through molecular networks , 2008, Cell Research.

[29]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[30]  Mario Medvedovic,et al.  Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data , 2007, BMC Bioinformatics.

[31]  Lei Xu,et al.  A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving , 2007, Pattern Recognit..

[32]  Shi-Shang Jang,et al.  Biological network mapping and source signal deduction , 2007, Bioinform..

[33]  D. M. Titterington,et al.  Variational approximations in Bayesian model selection for finite mixture distributions , 2007, Comput. Stat. Data Anal..

[34]  Lurdes Y T Inoue,et al.  Cluster-based network model for time-course gene expression data. , 2007, Biostatistics.

[35]  Hyunsoo Kim,et al.  Sparse Non-negative Matrix Factorizations via Alternating Non-negativity-constrained Least Squares , 2006 .

[36]  R. Sharan,et al.  Network-based prediction of protein function , 2007, Molecular systems biology.

[37]  Jean-Loup Faulon,et al.  Boolean dynamics of genetic regulatory networks inferred from microarray time series data , 2007, Bioinform..

[38]  Lei Xu,et al.  One-Bit-Matching Theorem for ICA, Convex-Concave Programming on Polyhedral Set, and Distribution Approximation for Combinatorics , 2007, Neural Computation.

[39]  Lorenz Wernisch,et al.  Factor analysis for gene regulatory networks and transcription factor activity profiles , 2007, BMC Bioinformatics.

[40]  James C. Liao,et al.  A Gibbs sampler for the identification of gene expression and network connectivity consistency , 2006, Bioinform..

[41]  Neil D. Lawrence,et al.  Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities , 2006, Bioinform..

[42]  David J. Reiss,et al.  Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks , 2006, BMC Bioinformatics.

[43]  Tomoyuki Higuchi,et al.  State-space approach with the maximum likelihood principle to identify the system generating time-course gene expression data of yeast , 2006, Int. J. Data Min. Bioinform..

[44]  Ning Sun,et al.  Bayesian error analysis model for reconstructing transcriptional regulatory networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Zheng Li,et al.  Using a state-space model with hidden variables to infer transcription factor activities , 2006, Bioinform..

[46]  Chiara Sabatti,et al.  Bayesian sparse hidden components analysis for transcription regulation networks , 2005, Bioinform..

[47]  J. Winderickx,et al.  Inferring transcriptional modules from ChIP-chip, motif and microarray data , 2006, Genome Biology.

[48]  A. Boulesteix,et al.  Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach , 2005, Theoretical Biology and Medical Modelling.

[49]  Lei Xu,et al.  One-Bit-Matching ICA Theorem, Convex-Concave Programming, and Combinatorial Optimization , 2005, ISNN.

[50]  Mark J. van der Laan,et al.  A Statistical Method for Constructing Transcriptional Regulatory Networks Using Gene Expression and Sequence Data , 2005, J. Comput. Biol..

[51]  Zoubin Ghahramani,et al.  A Bayesian approach to reconstructing genetic regulatory networks with hidden factors , 2005, Bioinform..

[52]  Zhang Yi,et al.  Advances in Neural Networks - ISNN 2005, Second International Symposium on Neural Networks, Chongqing, China, May 30 - June 1, 2005, Proceedings, Part II , 2005, ISNN.

[53]  Fang-Xiang Wu,et al.  STATE-SPACE MODEL WITH TIME DELAYS FOR GENE REGULATORY NETWORKS , 2004 .

[54]  Lei Xu,et al.  Temporal BYY encoding, Markovian state spaces, and space dimension determination , 2004, IEEE Transactions on Neural Networks.

[55]  Albert Ali Salah,et al.  Incremental mixtures of factor analysers , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[56]  Lei Xu,et al.  Advances on BYY harmony learning: information theoretic perspective, generalized projection geometry, and independent factor autodetermination , 2004, IEEE Transactions on Neural Networks.

[57]  Lei Xu,et al.  Investigations on non-Gaussian factor analysis , 2004, IEEE Signal Process. Lett..

[58]  Zoubin Ghahramani,et al.  Modeling T-cell activation using gene expression profiling and state-space models , 2004, Bioinform..

[59]  Mario Vento,et al.  Thirty Years Of Graph Matching In Pattern Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..

[60]  M. Davies,et al.  Identifiability issues in noisy ICA , 2004, IEEE Signal Processing Letters.

[61]  Chiara Sabatti,et al.  Network component analysis: Reconstruction of regulatory signals in biological systems , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[63]  S. Batzoglou,et al.  Application of independent component analysis to microarrays , 2003, Genome Biology.

[64]  Nicola J. Rinaldi,et al.  Computational discovery of gene modules and regulatory networks , 2003, Nature Biotechnology.

[65]  Lei Xu,et al.  Strip line detection and thinning by RPCL-based local PCA , 2003, Pattern Recognit. Lett..

[66]  L. Mirny,et al.  Protein complexes and functional modules in molecular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Lei Xu Distribution approximation, combinatorial optimization, and Lagrange-Barrier , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[68]  J. Collins,et al.  Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling , 2003, Science.

[69]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[70]  Lei Xu,et al.  Data smoothing regularization, multi-sets-learning, and problem solving strategies , 2003, Neural Networks.

[71]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[72]  D. Bu,et al.  Topological structure analysis of the protein-protein interaction network in budding yeast. , 2003, Nucleic acids research.

[73]  Lei Xu,et al.  BYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units , 2003, Neurocomputing.

[74]  D. Botstein,et al.  Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[75]  L. Xu Independent Component Analysis and Extensions with Noise and Time: A Bayesian Ying-Yang Learning Perspective , 2003 .

[76]  Stephen J. Roberts,et al.  Variational Mixture of Bayesian Independent Component Analyzers , 2003, Neural Computation.

[77]  Lei Xu,et al.  Topological local principal component analysis , 2002, Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02..

[78]  Lei Xu,et al.  BYY harmony learning, structural RPCL, and topological self-organizing on mixture models , 2002, Neural Networks.

[79]  Jesper Tegnér,et al.  Reverse engineering gene networks using singular value decomposition and robust regression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[81]  Wolfram Liebermeister,et al.  Linear modes of gene expression determined by independent component analysis , 2002, Bioinform..

[82]  Lei Xu,et al.  A PCA approach for fast retrieval of structural patterns in attributed graphs , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[83]  Lei Xu,et al.  BYY harmony learning, independent state space, and generalized APT financial analyses , 2001, IEEE Trans. Neural Networks.

[84]  A. Utsugi,et al.  Bayesian Analysis of Mixtures of Factor Analyzers , 2001, Neural Computation.

[85]  H. Bussemaker,et al.  Regulatory element detection using correlation with expression , 2001, Nature Genetics.

[86]  Adrian Corduneanu,et al.  Variational Bayesian Model Selection for Mixture Distributions , 2001 .

[87]  M. Knott,et al.  Generalized latent trait models , 2000 .

[88]  D. Botstein,et al.  Singular value decomposition for genome-wide expression data processing and modeling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Neal S. Holter,et al.  Fundamental patterns underlying gene expression profiles: simplicity from complexity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Lei Xu,et al.  Temporal BYY learning for state space approach, hidden Markov model, and blind source separation , 2000, IEEE Trans. Signal Process..

[91]  Geoffrey E. Hinton,et al.  Variational Learning for Switching State-Space Models , 2000, Neural Computation.

[92]  C. Mallows Some Comments on Cp , 2000, Technometrics.

[93]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[94]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[95]  Zoubin Ghahramani,et al.  Variational Inference for Bayesian Mixtures of Factor Analysers , 1999, NIPS.

[96]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[97]  Hagai Attias,et al.  Independent Factor Analysis , 1999, Neural Computation.

[98]  Jian Li,et al.  Computationally efficient maximum likelihood estimation of structured covariance matrices , 1999, IEEE Trans. Signal Process..

[99]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[100]  David L. Dowe,et al.  Minimum Message Length and Kolmogorov Complexity , 1999, Comput. J..

[101]  Lei Xu,et al.  Bayesian Kullback Ying-Yang dependence reduction theory , 1998, Neurocomputing.

[102]  Lei Xu,et al.  Rival penalized competitive learning, finite mixture, and multisets clustering , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[103]  Lei Xu Bayesian Ying-Yang System and Theory as a Unified Statistical Learning Approach: (V) Temporal Modeling for Temporal Perception and Control , 1998, ICONIP.

[104]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[105]  Lars Kai Hansen,et al.  Regularization with a Pruning Prior , 1997, Neural Networks.

[106]  Eric Moulines,et al.  Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[107]  M. Reckase The Past and Future of Multidimensional Item Response Theory , 1997 .

[108]  Geoffrey E. Hinton,et al.  Modeling the manifolds of images of handwritten digits , 1997, IEEE Trans. Neural Networks.

[109]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[110]  Deepa Kundur,et al.  Blind image deconvolution revisited , 1996 .

[111]  Minyue Fu,et al.  Learning Multiple Causes by Competition Enhanced least mean Square error Reconstruction , 1996, Int. J. Neural Syst..

[112]  Michael I. Jordan,et al.  On Convergence Properties of the EM Algorithm for Gaussian Mixtures , 1996, Neural Computation.

[113]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[114]  Peter M. Williams,et al.  Bayesian Regularization and Pruning Using a Laplace Prior , 1995, Neural Computation.

[115]  Eric Saund,et al.  A Multiple Cause Mixture Model for Unsupervised Learning , 1995, Neural Computation.

[116]  P. Paatero,et al.  Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .

[117]  Lei Xu,et al.  Multisets modeling learning: an unified theory for supervised and unsupervised learning , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[118]  S. Klasa,et al.  A PCA-like rule for pattern classification based on attributed graph , 1993, Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan).

[119]  Erkki Oja,et al.  Rival penalized competitive learning for clustering analysis, RBF net, and curve detection , 1993, IEEE Trans. Neural Networks.

[120]  John A. Nelder,et al.  Generalized linear models. 2nd ed. , 1993 .

[121]  Adam Krzyżak,et al.  Unsupervised and supervised classifications by rival penalized competitive learning , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems.

[122]  Stuart C. Shapiro,et al.  Encyclopedia of artificial intelligence, vols. 1 and 2 (2nd ed.) , 1992 .

[123]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[124]  Erkki Oja,et al.  Improved Simulated Annealing, Boltzmann Machine, and Attributed Graph Matching , 1990, EURASIP Workshop.

[125]  Donald E. Ramirez,et al.  FACAIC: Model selection algorithm for the orthogonal factor model using AIC and CAIC , 1988 .

[126]  Shinji Umeyama,et al.  An Eigendecomposition Approach to Weighted Graph Matching Problems , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[127]  Lei Xu,et al.  Structuring causal tree models with continuous variables , 1987, Int. J. Approx. Reason..

[128]  T. Hang SEMI-BLIND DECONVOLUTION OF FINITE LENGTH SEQUENCE (II)——NONLINEAR PROBLEM , 1987 .

[129]  D. Bartholomew Latent Variable Models And Factor Analysis , 1987 .

[130]  Andrew P. Sage,et al.  Uncertainty in Artificial Intelligence , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[131]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[132]  D. Luenberger,et al.  Estimation of structured covariance matrices , 1982, Proceedings of the IEEE.

[133]  Dorothy T. Thayer,et al.  EM algorithms for ML factor analysis , 1982 .

[134]  C. Morris Natural Exponential Families with Quadratic Variance Functions , 1982 .

[135]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[136]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[137]  T. M. Cannon,et al.  Blind deconvolution through digital signal processing , 1975, Proceedings of the IEEE.

[138]  H. Akaike A new look at the statistical model identification , 1974 .

[139]  C. L. Mallows Some comments on C_p , 1973 .

[140]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[141]  C. S. Wallace,et al.  An Information Measure for Classification , 1968, Comput. J..

[142]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[143]  J. W. Gorman,et al.  Selection of Variables for Fitting Equations to Data , 1966 .

[144]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..

[145]  Herman Rubin,et al.  Statistical Inference in Factor Analysis , 1956 .