Three Absolute Perturbation Bounds for Matrix Eigenvalues Imply Relative Bounds
暂无分享,去创建一个
[1] Ren-Cang Li. Relative Perturbation Theory: I. Eigenvalue and Singular Value Variations , 1998, SIAM J. Matrix Anal. Appl..
[2] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[3] Ren-Cang Li. Relative perturbation theory. III. More bounds on eigenvalue variation , 1997 .
[4] Ivan Slapničar,et al. Accurate Symmetric Eigenreduction by a Jacobi Method , 1993 .
[5] J. Barlow,et al. Computing accurate eigensystems of scaled diagonally dominant matrices: LAPACK working note No. 7 , 1988 .
[6] Roy Mathias. Accurate Eigensystem Computations by Jacobi Methods , 1995, SIAM J. Matrix Anal. Appl..
[7] C. T. Fike,et al. Norms and exclusion theorems , 1960 .
[8] Ren Li. Relative perturbation theory: (I) eigenvalue variations , 1994 .
[9] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[10] B. Parlett,et al. Accurate singular values and differential qd algorithms , 1994 .
[11] R. Mathias. Spectral Perturbation Bounds for Positive Definite Matrices , 1997 .
[12] Shmuel Friedland,et al. Singular values, doubly stochastic matrices, and applications , 1995 .
[13] Ilse C. F. Ipsen,et al. Relative perturbation techniques for singular value problems , 1995 .
[14] James Demmel,et al. Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..
[15] B. Parlett,et al. Accurate singular values and differential qd algorithms , 1994 .
[16] Ivan Slapničar,et al. Floating-point perturbations of Hermitian matrices , 1993 .