Three Absolute Perturbation Bounds for Matrix Eigenvalues Imply Relative Bounds

We show that three well-known perturbation bounds for matrix eigenvalues imply relative bounds: the Bauer--Fike and Hoffman--Wielandt theorems for diagonalizable matrices, and Weyl's theorem for Hermitian matrices. As a consequence, relative perturbation bounds are not necessarily stronger than absolute bounds, and the conditioning of an eigenvalue in the relative sense is the same as in the absolute sense. We also show that eigenvalues of normal matrices are no more sensitive to perturbations than eigenvalues of Hermitian positive-definite matrices. The relative error bounds are invariant under congruence transformations, such as grading and scaling.

[1]  Ren-Cang Li Relative Perturbation Theory: I. Eigenvalue and Singular Value Variations , 1998, SIAM J. Matrix Anal. Appl..

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  Ren-Cang Li Relative perturbation theory. III. More bounds on eigenvalue variation , 1997 .

[4]  Ivan Slapničar,et al.  Accurate Symmetric Eigenreduction by a Jacobi Method , 1993 .

[5]  J. Barlow,et al.  Computing accurate eigensystems of scaled diagonally dominant matrices: LAPACK working note No. 7 , 1988 .

[6]  Roy Mathias Accurate Eigensystem Computations by Jacobi Methods , 1995, SIAM J. Matrix Anal. Appl..

[7]  C. T. Fike,et al.  Norms and exclusion theorems , 1960 .

[8]  Ren Li Relative perturbation theory: (I) eigenvalue variations , 1994 .

[9]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[10]  B. Parlett,et al.  Accurate singular values and differential qd algorithms , 1994 .

[11]  R. Mathias Spectral Perturbation Bounds for Positive Definite Matrices , 1997 .

[12]  Shmuel Friedland,et al.  Singular values, doubly stochastic matrices, and applications , 1995 .

[13]  Ilse C. F. Ipsen,et al.  Relative perturbation techniques for singular value problems , 1995 .

[14]  James Demmel,et al.  Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..

[15]  B. Parlett,et al.  Accurate singular values and differential qd algorithms , 1994 .

[16]  Ivan Slapničar,et al.  Floating-point perturbations of Hermitian matrices , 1993 .