On Pogorelov Estimates for a Class of Fully Nonlinear Equations
暂无分享,去创建一个
Ni Xiang | Qiang Tu | Wei Lu | Xiaojuan Chen | Qiang Tu | N. Xiang | Xiaojuan Chen | Wei Lu
[1] J. Urbas. Hessian equations on compact Riemannian manifolds , 2002 .
[2] On estimates for the Fu–Yau generalization of a Strominger system , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).
[3] S. Yau,et al. The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation , 2006, hep-th/0604063.
[4] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .
[5] Bo Guan. The Dirichlet problem for fully nonlinear elliptic equations on Riemannian manifolds , 2014, Advances in Mathematics.
[6] Pengfei Guan. Topics in Geometric Fully Nonlinear Equations , 2004 .
[7] J. Urbas. On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations , 1990 .
[8] Xu-jia Wang,et al. A variational theory of the Hessian equation , 2001 .
[9] Xiangwen Zhang,et al. The Fu–Yau equation with negative slope parameter , 2016, Inventiones mathematicae.
[10] Bo Guan,et al. SECOND-ORDER ESTIMATES AND REGULARITY FOR FULLY NONLINEAR ELLIPTIC EQUATIONS ON RIEMANNIAN MANIFOLDS , 2012, 1211.0181.
[11] Pengfei Guan,et al. A class of curvature type equations. , 2019, 1909.03645.
[12] A. Pogorelov. The Minkowski multidimensional problem , 1978 .
[13] Changyu Ren,et al. An interior estimate for convex solutions and a rigidity theorem , 2015, 1504.01206.
[14] H. Lawson,et al. Calibrated geometries , 1982 .
[15] Xiangwen Zhang,et al. Fu–Yau Hessian equations , 2018, Journal of Differential Geometry.
[16] S. Yau,et al. A Monge?Ampère-type equation motivated by string theory , 2007 .
[17] N. Krylov. On the general notion of fully nonlinear second-order elliptic equations , 1995 .