On Pogorelov Estimates for a Class of Fully Nonlinear Equations

Abstract In this paper, we give Pogorelov estimates for a general class of non-degenerate fully nonlinear equations and the corresponding degenerate equations by using a priori estimates.

[1]  J. Urbas Hessian equations on compact Riemannian manifolds , 2002 .

[2]  On estimates for the Fu–Yau generalization of a Strominger system , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).

[3]  S. Yau,et al.  The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation , 2006, hep-th/0604063.

[4]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[5]  Bo Guan The Dirichlet problem for fully nonlinear elliptic equations on Riemannian manifolds , 2014, Advances in Mathematics.

[6]  Pengfei Guan Topics in Geometric Fully Nonlinear Equations , 2004 .

[7]  J. Urbas On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations , 1990 .

[8]  Xu-jia Wang,et al.  A variational theory of the Hessian equation , 2001 .

[9]  Xiangwen Zhang,et al.  The Fu–Yau equation with negative slope parameter , 2016, Inventiones mathematicae.

[10]  Bo Guan,et al.  SECOND-ORDER ESTIMATES AND REGULARITY FOR FULLY NONLINEAR ELLIPTIC EQUATIONS ON RIEMANNIAN MANIFOLDS , 2012, 1211.0181.

[11]  Pengfei Guan,et al.  A class of curvature type equations. , 2019, 1909.03645.

[12]  A. Pogorelov The Minkowski multidimensional problem , 1978 .

[13]  Changyu Ren,et al.  An interior estimate for convex solutions and a rigidity theorem , 2015, 1504.01206.

[14]  H. Lawson,et al.  Calibrated geometries , 1982 .

[15]  Xiangwen Zhang,et al.  Fu–Yau Hessian equations , 2018, Journal of Differential Geometry.

[16]  S. Yau,et al.  A Monge?Ampère-type equation motivated by string theory , 2007 .

[17]  N. Krylov On the general notion of fully nonlinear second-order elliptic equations , 1995 .