Polynomial-Time Reductions from Multivariate to Bi- and Univariate Integral Polynomial Factorization

Consider a polynomial f with an arbitrary but fixed number of variables and with integral coefficients. We present an algorithm which reduces the problem of finding the irreducible factors of f in polynomial-time in the total degree of f and the coefficient lengths of f to factoring a univariate integral polynomial. Together with A. Lenstra’s,.H. Lenstra’s and L. Lovasz’ polynomial-time factorization algorithm for univariate integral polynomials [Math. Ann., 261 (1982), pp. 515–534] this algorithm implies the following theorem. Factoring an integral polynomial with a fixed number of variables into irreducibles, except for the constant factors, can be accomplished in deterministic polynomial-time in the total degree and the size of its coefficients. Our algorithm can be generalized to factoring multivariate polynomials with coefficients in algebraic number fields and finite fields in polynomial-time. We also present a different algorithm, based on an effective version of a Hilbert Irreducibility Theorem, w...

[1]  Paul S. Wang,et al.  New Algorithms for Polynomial Square-Free Decomposition Over the Integers , 1979, SIAM J. Comput..

[2]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[3]  D. Y. Y. Yun On the equivalence of polynomial GCD and squarefree factorization problems , 1977 .

[4]  Barry M. Trager,et al.  Algebraic factoring and rational function integration , 1976, SYMSAC '76.

[5]  David R. Musser,et al.  Multivariate Polynomial Factorization , 1975, JACM.

[6]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[7]  W. S. Brown,et al.  On Euclid's Algorithm and the Computation of Polynomial Greatest Common Divisors , 1971, JACM.

[8]  D. Hilbert,et al.  Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten , 1933 .

[9]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[10]  H. T. Kung,et al.  All Algebraic Functions Can Be Computed Fast , 1978, JACM.

[11]  Peter J. Weinberger,et al.  Factoring Polynomials Over Algebraic Number Fields , 1976, TOMS.

[12]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[13]  Erich Kaltofen,et al.  On the complexity of factoring polynomials with integer coefficients , 1982 .

[14]  Paul S. Wang An improved multivariate polynomial factoring algorithm , 1978 .

[15]  M. Mignotte An inequality about factors of polynomials , 1974 .

[16]  A. O. Gelʹfond Transcendental and Algebraic Numbers , 1960 .

[17]  Joachim von zur Gathen,et al.  Factoring Sparse Multivariate Polynomials , 1983, J. Comput. Syst. Sci..

[18]  Erich Kaltofen,et al.  A polynomial reduction from multivariate to bivariate integral polynomial factorization. , 1982, STOC '82.

[19]  Arjen K. Lenstra,et al.  Factoring polynominals over algebraic number fields , 1983, EUROCAL.