Extraction of effective parameters of anisotropic optical materials using a decoupled analytical method.

A decoupled analytical technique based on the Mueller matrix method and the Stokes parameters is proposed for extracting effective parameters of anisotropic optical materials in linear birefringence (LB), linear dichroism (LD), circular birefrinegence (CB), and circular dichroism (CD) properties. This technique is essential in determining the optical properties of opto-electric or biomedical materials for the development of advanced inspection and/or diagnostic applications. The error and resolution analysis of the proposed approach is demonstrated by extracting the effective parameters given an assumption of errors ranging ± 0.005 in the values of the output Stokes parameters. The results confirm the ability of the proposed method to yield full-range measurements of all the optical parameters. The decoupled nature of the analytical model yields several important advantages, including an improved accuracy and the ability to extract the parameters of optical samples with only LB, CB, LD, or CD property without using compensation technique or pretreatment. Moreover, by decoupling the extraction process, the "multiple solutions" problem inherent in previous models presented by the current group is avoided.

[1]  Nirmalya Ghosh,et al.  Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence. , 2008, Journal of biomedical optics.

[2]  Sergey N. Savenkov,et al.  Invariance of anisotropy properties presentation in scope of polarization equivalence theorems , 2007, Saratov Fall Meeting.

[3]  Optical Rotatory and Circular Dichroic Scattering , 2003 .

[4]  J. Schellman,et al.  Optical spectroscopy of oriented molecules , 1987 .

[5]  Yu-Lung Lo,et al.  A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal , 2006 .

[6]  Nirmalya Ghosh,et al.  Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues , 2010 .

[7]  Razvigor Ossikovski,et al.  Interpretation of nondepolarizing Mueller matrices based on singular-value decomposition. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  Razvigor Ossikovski,et al.  Differential matrix formalism for depolarizing anisotropic media. , 2011, Optics letters.

[9]  Nirmalya Ghosh,et al.  Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry , 2009 .

[10]  N. C. Price,et al.  How to study proteins by circular dichroism. , 2005, Biochimica et biophysica acta.

[11]  H. Yao,et al.  Detection of spectral inhomogeneities of mesoscopic thiacyanine J aggregates in solution by the apparent CD spectral measurement , 2006 .

[12]  Xiang-Run Huang,et al.  Linear birefringence of the retinal nerve fiber layer measured in vitro with a multispectral imaging micropolarimeter. , 2002, Journal of biomedical optics.

[13]  J. L. Arce-Diego,et al.  Depolarizing differential Mueller matrices. , 2011, Optics letters.

[14]  D B Chenault,et al.  Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter. , 1993, Applied optics.

[15]  W. Kaminsky,et al.  Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone. , 2003, Journal of the American Chemical Society.

[16]  B. Wallace,et al.  Circular-dichroism analyses of membrane proteins: examination of environmental effects on bacteriorhodopsin spectra. , 1993, The Biochemical journal.

[17]  Toru Asahi,et al.  Development of HAUP and its applications to various kinds of solids , 2000, Optics & Photonics.

[18]  A. Mazzulla,et al.  Method for artifact-free circular dichroism measurements based on polarization grating. , 2010, Optics letters.

[19]  F. Zsila,et al.  Circular dichroism and absorption spectroscopic data reveal binding of the natural cis-carotenoid bixin to human α1-acid glycoprotein , 2005 .

[20]  Yu-Lung Lo,et al.  Design of Polarization-Insensitive Optical Fiber Probe Based on Effective Optical Parameters , 2011, Journal of Lightwave Technology.

[21]  Lihong V. Wang,et al.  Propagation of polarized light in birefringent turbid media: a Monte Carlo study. , 2002, Journal of biomedical optics.

[22]  Rasheed M. A. Azzam,et al.  Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4 × 4 matrix calculus , 1978 .

[23]  W. Kaminsky,et al.  Polarimetric imaging of crystals. , 2004, Chemical Society reviews.

[24]  H. Hayakawa,et al.  Vertical-type chiroptical spectrophotometer (I): instrumentation and application to diffuse reflectance circular dichroism measurement. , 2008, The Review of scientific instruments.

[25]  R. Chipman,et al.  Infrared birefringence spectra for cadmium sulfide and cadmium selenide. , 1993, Applied optics.

[26]  Kobayashi,et al.  Optical properties of superconducting Bi2Sr2CaCu2O8. , 1996, Physical review. B, Condensed matter.

[27]  R. Chipman,et al.  Interpretation of Mueller matrices based on polar decomposition , 1996 .

[28]  D B Chenault,et al.  Electro-optic coefficient spectrum of cadmium telluride. , 1994, Applied optics.

[29]  I. Tinoco,et al.  The optical activity of nucleic acids and their aggregates. , 1980, Annual review of biophysics and bioengineering.

[30]  Jérôme Morio,et al.  Influence of the order of diattenuator, retarder, and polarizer in polar decomposition of Mueller matrices. , 2004, Optics letters.

[31]  N. Berova,et al.  Circular Dichroism: Principles and Applications , 1994 .

[32]  Noé Ortega-Quijano,et al.  Mueller matrix differential decomposition for direction reversal: application to samples measured in reflection and backscattering. , 2011, Optics express.

[33]  Nirmalya Ghosh,et al.  Mueller matrix decomposition for polarized light assessment of biological tissues , 2009, Journal of biophotonics.

[34]  Yu-Lung Lo,et al.  Measurement of linear birefringence and diattenuation properties of optical samples using polarimeter and Stokes parameters. , 2009, Optics express.

[35]  R. Knighton,et al.  Diattenuation and polarization preservation of retinal nerve fiber layer reflectance. , 2003, Applied optics.

[36]  Oriol Arteaga,et al.  Analytic inversion of the Mueller-Jones polarization matrices for homogeneous media. , 2010, Optics letters.

[37]  Reiko Kuroda,et al.  A solid-state dedicated circular dichroism spectrophotometer: Development and application , 2001 .

[38]  Russell A. Chipman,et al.  Visible Mueller matrix spectropolarimetry , 1997, Optics & Photonics.

[39]  Yu-Lung Lo,et al.  Characterization on five effective parameters of anisotropic optical material using Stokes parameters-Demonstration by a fiber-type polarimeter. , 2010, Optics express.

[40]  B. Jeune,et al.  Decomposition algorithm of an experimental Mueller matrix , 2009 .

[41]  Nirmalya Ghosh,et al.  Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo. , 2009, Journal of biomedical optics.

[42]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.