Density functional Gaussian‐type‐orbital approach to molecular geometries, vibrations, and reaction energies

We present the theory, computational implementation, and applications of a density functional Gaussian‐type‐orbital approach called DGauss. For a range of typical organic and small inorganic molecules, it is found that this approach results in equilibrium geometries, vibrational frequencies, bond dissociation energies, and reaction energies that are in many cases significantly closer to experiment than those obtained with Hartree–Fock theory. On the local spin density functional level, DGauss predicts equilibrium bond lengths within about 0.02 A or better compared with experiment, bond angles, and dihedral angles to within 1–2°, and vibrational frequencies within about 3%–5%. While Hartree–Fock optimized basis sets such as the 6‐31 G** set can be used in DGauss calculations to give good geometries, the accurate prediction of reaction energies requires the use of density functional optimized Gaussian‐type basis sets. Nonlocal corrections as proposed by Becke and Perdew for the exchange and correlation ener...

[1]  Allan,et al.  Solution of Schrödinger's equation for large systems. , 1989, Physical review. B, Condensed matter.

[2]  T. Ziegler Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics , 1991 .

[3]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[4]  D. Salahub,et al.  New algorithm for the optimization of geometries in local density functional theory , 1990 .

[5]  D. Salahub,et al.  LCAO local-spin-density and Xα calculations for Cr2 and Mo2 , 1984 .

[6]  K. P. Lawley,et al.  Ab initio methods in quantum chemistry , 1987 .

[7]  Dennis R. Salahub,et al.  Compact basis sets for LCAO‐LSD calculations. Part I: Method and bases for Sc to Zn , 1985 .

[8]  B. Delley,et al.  Efficient and accurate expansion methods for molecules in local density models , 1982 .

[9]  Marco Häser,et al.  Improvements on the direct SCF method , 1989 .

[10]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[11]  D. Salahub,et al.  Ground and excited states of group IVA diatomics from local‐spin‐density calculations: Model potentials for Si, Ge, and Sn , 1987 .

[12]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[13]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[14]  M. Levy Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Erich Wimmer,et al.  Local Density Functional Theory of Surfaces and Molecules: Unified Electronic Structural Approach , 1987 .

[16]  Dennis R. Salahub,et al.  Analytical gradient of the linear combination of Gaussian‐type orbitals—local spin density energy , 1989 .

[17]  D. Kleier,et al.  The electronic structure of nitromethane A multiconfiguration self-consistent field study , 1984 .

[18]  D. Salahub,et al.  LCGTO MP LSD calculations for the diatomics PdX (X = C, Si, Ge, Sn) , 1987 .

[19]  P Boulle,et al.  J. Chim. Phys. Phys.-Chim. Biol , 1980 .

[20]  D. Dixon,et al.  Density functional study of a highly correlated molecule, oxygen fluoride (FOOF) , 1991 .

[21]  Ronald H. Felton,et al.  A new computational approach to Slater’s SCF–Xα equation , 1975 .

[22]  Richard A. Friesner,et al.  Solution of self-consistent field electronic structure equations by a pseudospectral method , 1985 .

[23]  Erich Wimmer,et al.  Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O 2 molecule , 1981 .

[24]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[25]  P. C. Hariharan,et al.  The effect of d-functions on molecular orbital energies for hydrocarbons , 1972 .

[26]  Shigeru Obara,et al.  Efficient recursive computation of molecular integrals over Cartesian Gaussian functions , 1986 .

[27]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[28]  John C. Slater,et al.  Wave Functions in a Periodic Potential , 1937 .

[29]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[30]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[31]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[32]  H. Adachi,et al.  Calculations of molecular ionization energies using a self‐consistent‐charge Hartree–Fock–Slater method , 1976 .

[33]  J. Connolly,et al.  On first‐row diatomic molecules and local density models , 1979 .

[34]  Dunlap,et al.  Local-density-functional total energy gradients in the linear combination of Gaussian-type orbitals method. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[35]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[36]  W. Goddard,et al.  Correlation‐consistent configuration interaction: Accurate bond dissociation energies from simple wave functions , 1988 .

[37]  N. Rösch,et al.  On the gaussian-type orbitals approach to local density functional theory , 1989 .

[38]  A. Komornicki,et al.  Rapid geometry optimization for semi-empirical molecular orbital methods , 1971 .

[39]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .

[40]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[41]  Axel D. Becke,et al.  Density Functional Calculations of Molecular Bond Energies , 1986 .

[42]  W. Dailey,et al.  Difluoromaleic anhydride as a source of matrix-isolated difluoropropadienone, difluorocyclopropenone, and difluoroacetylene , 1989 .

[43]  D. Ellis,et al.  An efficient numerical multicenter basis set for molecular orbital calculations: Application to FeCl4 , 1973 .

[44]  Martin Head-Gordon,et al.  A method for two-electron Gaussian integral and integral derivative evaluation using recurrence relations , 1988 .

[45]  Painter,et al.  Orbital forces in the density-functional formalism: Application to the copper dimer. , 1985, Physical review. B, Condensed matter.

[46]  F. W. Averill,et al.  Augmented Gaussian-orbital basis for atomic-cluster calculations within the density-functional formalism: Application to Cu/sub 2/ , 1983 .

[47]  H. Schaefer,et al.  The infrared spectrum of difluorovinylidene, F2C=C: , 1990 .

[48]  Tom Ziegler,et al.  The determination of molecular structures by density functional theory. The evaluation of analytical energy gradients by numerical integration , 1988 .

[49]  Martin Head-Gordon,et al.  Efficient computation of two-electron - repulsion integrals and their nth-order derivatives using contracted Gaussian basis sets , 1990 .

[50]  L. Marton,et al.  Advances in Electronics and Electron Physics , 1958 .

[51]  Lee,et al.  Electronic structure of small clusters of nickel and iron. , 1985, Physical review. B, Condensed matter.

[52]  S. Huzinaga,et al.  A systematic preparation of new contracted Gaussian type orbital set. I. Transition metal atoms from Sc to Zn , 1979 .

[53]  O. K. Andersen,et al.  Linear methods in band theory , 1975 .

[54]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[55]  Jan K. Labanowski,et al.  Density Functional Methods in Chemistry , 1991 .

[56]  J. Almlöf,et al.  Principles for a direct SCF approach to LICAO–MOab‐initio calculations , 1982 .