A material point method for thin shells with frictional contact
暂无分享,去创建一个
Xuchen Han | Qi Guo | Joseph Teran | Rasmus Tamstorf | Chuyuan Fu | Theodore F. Gast | Rasmus Tamstorf | J. Teran | T. Gast | Chuyuan Fu | Q. Guo | Xuchen Han
[1] Chenfanfu Jiang,et al. The affine particle-in-cell method , 2015, ACM Trans. Graph..
[2] M. Gross,et al. Unified simulation of elastic rods, shells, and solids , 2010, ACM Trans. Graph..
[3] Michael C. H. Wu,et al. Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials , 2015 .
[4] Peter Wriggers,et al. Isogeometric contact: a review , 2014 .
[5] R. D. Mindlin,et al. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .
[6] Dinesh K. Pai,et al. Thin skin elastodynamics , 2013, ACM Trans. Graph..
[7] Chenfanfu Jiang,et al. A polynomial particle-in-cell method , 2017, ACM Trans. Graph..
[8] Billie J. Collier,et al. Drape Prediction by Means of Finite-element Analysis , 1991 .
[9] Andrew M. Stuart,et al. A First Course in Continuum Mechanics: Bibliography , 2008 .
[10] G. Steven,et al. A Study of Fabric Deformation Using Nonlinear Finite Elements , 1995 .
[11] Florence Bertails-Descoubes,et al. A semi-implicit material point method for the continuum simulation of granular materials , 2016, ACM Trans. Graph..
[12] M. Ortiz,et al. Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .
[13] Joseph Teran,et al. Modeling and data-driven parameter estimation for woven fabrics , 2017, Symposium on Computer Animation.
[14] Eftychios Sifakis,et al. To appear in the ACM SIGGRAPH conference proceedings Detail Preserving Continuum Simulation of Straight Hair , 2009 .
[15] James F. O'Brien,et al. Folding and crumpling adaptive sheets , 2013, ACM Trans. Graph..
[16] Michael Ortiz,et al. Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.
[17] Konrad Polthier,et al. Koiter's Thin Shells on Catmull-Clark Limit Surfaces , 2011, VMV.
[18] Dinesh K. Pai,et al. Eulerian-on-lagrangian simulation , 2013, TOGS.
[19] Ming C. Lin,et al. Free-flowing granular materials with two-way solid coupling , 2010, ACM Trans. Graph..
[20] Jia Lu,et al. Dynamic cloth simulation by isogeometric analysis , 2014 .
[21] Wolfgang Straßer,et al. A consistent bending model for cloth simulation with corotational subdivision finite elements , 2006 .
[22] Colby C. Swan,et al. A Mathematical Modeling Framework for Analysis of Functional Clothing , 2007 .
[23] Eitan Grinspun,et al. Continuum Foam , 2015, ACM Trans. Graph..
[24] Jia Lu,et al. Isogeometric contact analysis: Geometric basis and formulation for frictionless contact , 2011 .
[25] Manfred Bischoff,et al. A point to segment contact formulation for isogeometric, NURBS based finite elements , 2013 .
[26] R. D. Wood,et al. Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .
[27] Roland Wüchner,et al. Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .
[28] Wolfgang Straßer,et al. Deriving a Particle System from Continuum Mechanics for the Animation of Deformable Objects , 2003, IEEE Trans. Vis. Comput. Graph..
[29] Alexey Stomakhin,et al. A material point method for snow simulation , 2013, ACM Trans. Graph..
[30] Eitan Grinspun,et al. Normal bounds for subdivision-surface interference detection , 2001, Proceedings Visualization, 2001. VIS '01..
[31] R. Echter,et al. A hierarchic family of isogeometric shell finite elements , 2013 .
[32] Eitan Grinspun,et al. A Discrete Model for Inelastic Deformation of Thin Shells , 2004 .
[33] Fehmi Cirak,et al. Shear‐flexible subdivision shells , 2012 .
[34] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[35] Dinesh K. Pai,et al. Active volumetric musculoskeletal systems , 2014, ACM Trans. Graph..
[36] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[37] David Clyde,et al. Numerical Subdivision Surfaces for Simulation and Data Driven Modeling of Woven Cloth , 2017 .
[38] Peter Wriggers,et al. Contact treatment in isogeometric analysis with NURBS , 2011 .
[39] Mario Botsch,et al. Implementation of Discontinuous Galerkin Kirchhoff-Love Shells , 2009 .
[40] Theodore Kim,et al. Eulerian solid-fluid coupling , 2016, ACM Trans. Graph..
[41] Ming C. Lin,et al. Aggregate dynamics for dense crowd simulation , 2009, ACM Trans. Graph..
[42] Dinesh Manocha,et al. CAMA: Contact‐Aware Matrix Assembly with Unified Collision Handling for GPU‐based Cloth Simulation , 2016, Comput. Graph. Forum.
[43] Wolfgang Straßer,et al. A fast finite element solution for cloth modelling , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..
[44] Wing Kam Liu,et al. Nonlinear Finite Elements for Continua and Structures , 2000 .
[45] Eitan Grinspun,et al. CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..
[46] Eitan Grinspun Fehmi Cirak Peter Schröder Michael Ortiz Caltech. Non-Linear Mechanics and Collisions for Subdivision Surfaces , 1999 .
[47] Timothy G. Clapp,et al. Finite-element modeling and control of flexible fabric parts , 1996, IEEE Computer Graphics and Applications.
[48] Eftychios Sifakis,et al. Globally coupled collision handling using volume preserving impulses , 2008, SCA '08.
[49] J. C. Simo,et al. On a stress resultant geometrically exact shell model , 1990 .
[50] Mathieu Desbrun,et al. Discrete shells , 2003, SCA '03.
[51] Ronald Fedkiw,et al. Robust treatment of collisions, contact and friction for cloth animation , 2002, SIGGRAPH Courses.
[52] Eitan Grinspun,et al. Robust treatment of simultaneous collisions , 2008, ACM Trans. Graph..
[53] Manfred Bischoff,et al. A weighted point-based formulation for isogeometric contact , 2016 .
[54] Dinesh K. Pai,et al. Eulerian solid simulation with contact , 2011, ACM Trans. Graph..
[55] Chenfanfu Jiang,et al. Anisotropic elastoplasticity for cloth, knit and hair frictional contact , 2017, ACM Trans. Graph..
[56] J. C. Simo,et al. On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .
[57] R. Radovitzky,et al. A new discontinuous Galerkin method for Kirchhoff–Love shells , 2008 .
[58] Robert Bridson,et al. Animating sand as a fluid , 2005, ACM Trans. Graph..
[59] Ronald Fedkiw,et al. Simulation of clothing with folds and wrinkles , 2003, SCA '03.
[60] Markus H. Gross,et al. Implicit Contact Handling for Deformable Objects , 2009, Comput. Graph. Forum.
[61] Muthu Govindaraj,et al. A Physically Based Model of Fabric Drape Using Flexible Shell Theory , 1995 .
[62] Qi Guo. A Material Point Method for Thin Shells with Frictional Contact , 2018 .
[63] Andre Pradhana,et al. Drucker-prager elastoplasticity for sand animation , 2016, ACM Trans. Graph..
[64] John C. Platt,et al. Elastically deformable models , 1987, SIGGRAPH.
[65] E. A. Repetto,et al. Finite element analysis of nonsmooth contact , 1999 .
[66] Ming C. Lin,et al. Continuum modeling of crowd turbulence. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.