A material point method for thin shells with frictional contact

We present a novel method for simulation of thin shells with frictional contact using a combination of the Material Point Method (MPM) and subdivision finite elements. The shell kinematics are assumed to follow a continuum shell model which is decomposed into a Kirchhoff-Love motion that rotates the mid-surface normals followed by shearing and compression/extension of the material along the mid-surface normal. We use this decomposition to design an elastoplastic constitutive model to resolve frictional contact by decoupling resistance to contact and shearing from the bending resistance components of stress. We show that by resolving frictional contact with a continuum approach, our hybrid Lagrangian/Eulerian approach is capable of simulating challenging shell contact scenarios with hundreds of thousands to millions of degrees of freedom. Without the need for collision detection or resolution, our method runs in a few minutes per frame in these high resolution examples. Furthermore we show that our technique naturally couples with other traditional MPM methods for simulating granular and related materials.

[1]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[2]  M. Gross,et al.  Unified simulation of elastic rods, shells, and solids , 2010, ACM Trans. Graph..

[3]  Michael C. H. Wu,et al.  Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials , 2015 .

[4]  Peter Wriggers,et al.  Isogeometric contact: a review , 2014 .

[5]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[6]  Dinesh K. Pai,et al.  Thin skin elastodynamics , 2013, ACM Trans. Graph..

[7]  Chenfanfu Jiang,et al.  A polynomial particle-in-cell method , 2017, ACM Trans. Graph..

[8]  Billie J. Collier,et al.  Drape Prediction by Means of Finite-element Analysis , 1991 .

[9]  Andrew M. Stuart,et al.  A First Course in Continuum Mechanics: Bibliography , 2008 .

[10]  G. Steven,et al.  A Study of Fabric Deformation Using Nonlinear Finite Elements , 1995 .

[11]  Florence Bertails-Descoubes,et al.  A semi-implicit material point method for the continuum simulation of granular materials , 2016, ACM Trans. Graph..

[12]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[13]  Joseph Teran,et al.  Modeling and data-driven parameter estimation for woven fabrics , 2017, Symposium on Computer Animation.

[14]  Eftychios Sifakis,et al.  To appear in the ACM SIGGRAPH conference proceedings Detail Preserving Continuum Simulation of Straight Hair , 2009 .

[15]  James F. O'Brien,et al.  Folding and crumpling adaptive sheets , 2013, ACM Trans. Graph..

[16]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[17]  Konrad Polthier,et al.  Koiter's Thin Shells on Catmull-Clark Limit Surfaces , 2011, VMV.

[18]  Dinesh K. Pai,et al.  Eulerian-on-lagrangian simulation , 2013, TOGS.

[19]  Ming C. Lin,et al.  Free-flowing granular materials with two-way solid coupling , 2010, ACM Trans. Graph..

[20]  Jia Lu,et al.  Dynamic cloth simulation by isogeometric analysis , 2014 .

[21]  Wolfgang Straßer,et al.  A consistent bending model for cloth simulation with corotational subdivision finite elements , 2006 .

[22]  Colby C. Swan,et al.  A Mathematical Modeling Framework for Analysis of Functional Clothing , 2007 .

[23]  Eitan Grinspun,et al.  Continuum Foam , 2015, ACM Trans. Graph..

[24]  Jia Lu,et al.  Isogeometric contact analysis: Geometric basis and formulation for frictionless contact , 2011 .

[25]  Manfred Bischoff,et al.  A point to segment contact formulation for isogeometric, NURBS based finite elements , 2013 .

[26]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[27]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[28]  Wolfgang Straßer,et al.  Deriving a Particle System from Continuum Mechanics for the Animation of Deformable Objects , 2003, IEEE Trans. Vis. Comput. Graph..

[29]  Alexey Stomakhin,et al.  A material point method for snow simulation , 2013, ACM Trans. Graph..

[30]  Eitan Grinspun,et al.  Normal bounds for subdivision-surface interference detection , 2001, Proceedings Visualization, 2001. VIS '01..

[31]  R. Echter,et al.  A hierarchic family of isogeometric shell finite elements , 2013 .

[32]  Eitan Grinspun,et al.  A Discrete Model for Inelastic Deformation of Thin Shells , 2004 .

[33]  Fehmi Cirak,et al.  Shear‐flexible subdivision shells , 2012 .

[34]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[35]  Dinesh K. Pai,et al.  Active volumetric musculoskeletal systems , 2014, ACM Trans. Graph..

[36]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[37]  David Clyde,et al.  Numerical Subdivision Surfaces for Simulation and Data Driven Modeling of Woven Cloth , 2017 .

[38]  Peter Wriggers,et al.  Contact treatment in isogeometric analysis with NURBS , 2011 .

[39]  Mario Botsch,et al.  Implementation of Discontinuous Galerkin Kirchhoff-Love Shells , 2009 .

[40]  Theodore Kim,et al.  Eulerian solid-fluid coupling , 2016, ACM Trans. Graph..

[41]  Ming C. Lin,et al.  Aggregate dynamics for dense crowd simulation , 2009, ACM Trans. Graph..

[42]  Dinesh Manocha,et al.  CAMA: Contact‐Aware Matrix Assembly with Unified Collision Handling for GPU‐based Cloth Simulation , 2016, Comput. Graph. Forum.

[43]  Wolfgang Straßer,et al.  A fast finite element solution for cloth modelling , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[44]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[45]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[46]  Eitan Grinspun Fehmi Cirak Peter Schröder Michael Ortiz Caltech Non-Linear Mechanics and Collisions for Subdivision Surfaces , 1999 .

[47]  Timothy G. Clapp,et al.  Finite-element modeling and control of flexible fabric parts , 1996, IEEE Computer Graphics and Applications.

[48]  Eftychios Sifakis,et al.  Globally coupled collision handling using volume preserving impulses , 2008, SCA '08.

[49]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model , 1990 .

[50]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.

[51]  Ronald Fedkiw,et al.  Robust treatment of collisions, contact and friction for cloth animation , 2002, SIGGRAPH Courses.

[52]  Eitan Grinspun,et al.  Robust treatment of simultaneous collisions , 2008, ACM Trans. Graph..

[53]  Manfred Bischoff,et al.  A weighted point-based formulation for isogeometric contact , 2016 .

[54]  Dinesh K. Pai,et al.  Eulerian solid simulation with contact , 2011, ACM Trans. Graph..

[55]  Chenfanfu Jiang,et al.  Anisotropic elastoplasticity for cloth, knit and hair frictional contact , 2017, ACM Trans. Graph..

[56]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[57]  R. Radovitzky,et al.  A new discontinuous Galerkin method for Kirchhoff–Love shells , 2008 .

[58]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[59]  Ronald Fedkiw,et al.  Simulation of clothing with folds and wrinkles , 2003, SCA '03.

[60]  Markus H. Gross,et al.  Implicit Contact Handling for Deformable Objects , 2009, Comput. Graph. Forum.

[61]  Muthu Govindaraj,et al.  A Physically Based Model of Fabric Drape Using Flexible Shell Theory , 1995 .

[62]  Qi Guo A Material Point Method for Thin Shells with Frictional Contact , 2018 .

[63]  Andre Pradhana,et al.  Drucker-prager elastoplasticity for sand animation , 2016, ACM Trans. Graph..

[64]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[65]  E. A. Repetto,et al.  Finite element analysis of nonsmooth contact , 1999 .

[66]  Ming C. Lin,et al.  Continuum modeling of crowd turbulence. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.