Pretty patterns but a simple strategy: predator- prey interactions between juvenile herring and Atlantic puffins observed with multibeam sonar

Predator-prey interactions between Atlantic puffins (Fratercula arctica) and newly metamorphosed herring (Clupea harengus) were studied in the Lofoten-Rost area in northern Norway using a high-resolution multibeam sonar system. Attacks from diving puffins and predatory fish induced massive predator-response patterns at the school level, including bend, vacuole, hourglass, pseudopodium, herd, and split. All patterns have previously been observed, using the same sonar, in schools of adult herring attacked by groups of killer whales. Tight ball, the prevailing response pattern in adult fish under predation, was not observed, but a new pattern, intraschool density propagation, was found and interpreted as an analogue to tight-ball formations moving rapidly within the school. The observed patterns per - sisted much longer than in schools of adult herring attacked by killer whales, reflecting the different hunting strategies. Traditionally, the repertoire of predator responses observed in schooling fish has been interpreted as a range of co - operative tactics to trick predators, but this has recently been challenged by authors who suggested that fish that behave the same way produce different patterns at group level simply by maintaining a minimum approach distance to preda- tors and hiding behind conspecifics (the "selfish herd"), and that the particular combination of group size and number and behaviour of predators, rather than different individual tactics, determines the outcome at group level. Our findings support the latter hypothesis. Resume : Nous avons etudie les interactions predateurs-proies entre des Macareux moines (Fratercula arctica )e t des Harengs (Clupea harengus) fraichement metamorphoses dans la region de Lofoten-Rost, dans le nord de la Norvege au moyen d'un sonar de haute resolution a faisceaux multiples. Les attaques des oiseaux en plongee et des poissons predateurs declenchent des patterns de reaction massive au sein des bancs de harengs : repliement, vacuole, sablier, pseudopode, troupeau et separation, types de comportement deja observes, au moyen du meme sonar, dans des bancs de harengs adultes attaques par des epaulards. La formation d'une boule compacte, la reaction la plus frequente des poissons adultes face a des predateurs, n'a pas ete observee, mais il s'est produit un nouveau pattern dans les bancs de harengs, la pulsion de densite, interpretee comme analogue a la formation d'une boule compacte, mais se deplacant rapidement dans le banc. Ces patterns ont dure beaucoup plus longtemps que ceux observes dans les bancs de harengs adultes attaques par des epaulards, ce qui reflete la diversite des strategies de chasse. Traditionnellement, le repertoire des reactions aux predateurs observe au sein des bancs de poissons est considere comme une serie de tactiques de cooperation pour tromper les predateurs, mais cette theorie a ete remise en question par les auteurs qui croient que ces poissons qui se comportent de la meme facon produisent des patterns differents quand ils sont en groupe en s'approchant tout simplement le moins possible des predateurs et en se cachant derriere des individus conspecifiques (le « troupeau egoiste »). C'est la combinaison particuliere de la taille du groupe, du nombre et du comportement des predateurs plutot que l'ensemble des tactiques individuelles qui determine l'issue de la predation dans le groupe. Nos resultats supportent cette derniere hypothese. (Traduit par la Redaction) Axelsen et al. 1596

[1]  G D Ruxton,et al.  Spatial self-organisation in ecology: pretty patterns or robust reality? , 1997, Trends in ecology & evolution.

[2]  Mark L. Tasker,et al.  Counting Seabirds at Sea from Ships: A Review of Methods Employed and a Suggestion for a Standardized Approach , 1984 .

[3]  Ole Arve Misund,et al.  Dynamics of moving masses: variability in packing density, shape, and size among herring, sprat, and saithe schools , 1993 .

[4]  Christophe Guinet,et al.  A VIDEO SONAR AS A NEW TOOL TO STUDY MARINE MAMMALS IN THE WILD: MEASUREMENTS OF DOLPHIN SWIMMING SPEED , 1997 .

[5]  R. W. Baird,et al.  Occurrence and behaviour of transient killer whales: seasonal and pod-specific variability, foraging behaviour, and prey handling , 1995 .

[6]  Kenneth S. Norris,et al.  Dolphin societies : discoveries and puzzles , 1991 .

[7]  T. Pitcher Functions of Shoaling Behaviour in Teleosts , 1986 .

[8]  R. Toresen Predation on the eggs of Norwegian spring-spawning herring (Clupea harengus L.) on a spawning ground on the west coast of Norway , 1991 .

[9]  J. Blaxter,et al.  The Development of Startle Responses in Herring Larvae , 1985, Journal of the Marine Biological Association of the United Kingdom.

[10]  P. Webb Does schooling reduce fast-start response latencies in teleosts? , 1980 .

[11]  C. S. Wardle,et al.  Predator evasion in a fish school: test of a model for the fountain effect , 1986 .

[12]  S. L. Lima,et al.  Behavioral decisions made under the risk of predation: a review and prospectus , 1990 .

[13]  L. Nøttestad,et al.  'Await' in the pelagic: dynamic trade-off between reproduction and survival within a herring school splitting vertically during spawning , 2000 .

[14]  D. MacLennan,et al.  Fisheries acoustics , 2004, Reviews in Fish Biology and Fisheries.

[15]  Paolo Domenici,et al.  Escape behaviour of solitary herring (Clupea harengus ) and comparisons with schooling individuals , 1997 .

[16]  L. Fuiman Vulnerability of Atlantic herring larvae to predation by yearling herring , 1989 .

[17]  Fernando Ugarte,et al.  Surface and underwater observations of cooperatively feeding killer whales in northern Norway , 1993 .

[18]  T. Similä,et al.  Sonar observations of killer whales (Orcinus orca) feeding on herring schools , 1997 .

[19]  Ole Arve Misund,et al.  THE CHALLENGE OF THE HERRING IN THE NORWEGIAN SEA : MAKING OPTIMAL COLLECTIVE SPATIAL DECISIONS , 1998 .

[20]  Rune Vabø,et al.  An individual based model of fish school reactions: predicting antipredator behaviour as observed in nature , 1997 .

[21]  W. Foster,et al.  Group transmission of predator avoidance behaviour in a marine insect: The trafalgar effect , 1981, Animal Behaviour.

[22]  C. Clark,et al.  The evolutionary advantages of group foraging , 1986 .

[23]  K. Foote Importance of the swimbladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths , 1980 .

[24]  L. Nøttestad,et al.  KILLER WHALES ATTACKING SCHOOLING FISH: WHY FORCE HERRING FROM DEEP WATER TO THE SURFACE? , 2001 .

[25]  Ole Arve Misund,et al.  Adaptive behaviour of herring schools in the Norwegian Sea as revealed by high-resolution sonar , 1996 .

[26]  B. Seghers,et al.  SCHOOLING BEHAVIOR IN THE GUPPY (POECILIA RETICULATA): AN EVOLUTIONARY RESPONSE TO PREDATION , 1974, Evolution; international journal of organic evolution.

[27]  Pierre Fréon,et al.  From two dimensions to three: the use of multibeam sonar for a new approach in fisheries acoustics , 1999 .

[28]  Leif Nøttestad,et al.  Herring schooling manoeuvres in response to killer whale attacks , 1999 .

[29]  W. Hamilton Geometry for the selfish herd. , 1971, Journal of theoretical biology.

[30]  T. Pitcher,et al.  Predator-avoidance behaviours of sand-eel schools: why schools seldom split , 1983 .

[31]  K. Shrader-Frechette,et al.  Statistics, costs and rationality in ecological inference. , 1992, Trends in ecology & evolution.