Postsynaptic pyramidal target selection by descending layer III pyramidal axons: dual intracellular recordings and biocytin filling in slices of rat neocortex

Paired intracellular recordings in slices of adult rat neocortex with biocytin filling of synaptically connected neurons were used to investigate the pyramidal targets, in layer V, of layer III pyramidal axons. The time-course and sensitivity of excitatory postsynaptic potentials to current injected at the soma, and locations of close appositions between presynaptic axons and postsynaptic dendrites, indicated that the majority of contributory synapses were located in layer V. Within a "column" of tissue, radius < or = 250 microm, the probability that a randomly selected layer III pyramid innervated a layer V pyramid was 1 in 4 if the target cell was a burst firing pyramid with an apical dendritic tuft in layers II/I. If, however, the potential target was a regular spiking pyramid, the probability of connectivity was only 1 in 40, and none of the 13 anatomically identified postsynaptic layer V targets had a slender apical dendrite terminating in layers IV/III. Morphological reconstructions indicated that layer III pyramids select target layer V cells whose apical dendrites pass within 50-100 microm of the soma of the presynaptic pyramid in layer III and which have overlapping apical dendritic tufts in the superficial layers. The probability that a layer V cell would innervate a layer III pyramid lying within 250 microm of its apical dendrite was much lower (one in 58). Both presynaptic layer III pyramids and their large postsynaptic layer V targets could therefore access similar inputs in layers I/II, while small layer V pyramids could not. One prediction from the present data would be that neither descending layer V inputs to the striatum or thalamus, nor transcallosal connections would be readily activated by longer distance cortico-cortical "feedback" connections that terminated in layers I/II. These could, however, activate corticofugal pathways to the superior colliculus or pons, both directly and via layer III.

[1]  U. Eysel,et al.  Cellular organization of reciprocal patchy networks in layer III of cat visual cortex (area 17) , 1992, Neuroscience.

[2]  T. Wiesel,et al.  Clustered intrinsic connections in cat visual cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  K. Stratford,et al.  Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  E. White,et al.  Synapses of extrinsic and intrinsic origin made by callosal projection neurons in mouse visual cortex , 1993, The Journal of comparative neurology.

[5]  K. Rockland,et al.  Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey. , 1994, Cerebral cortex.

[6]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[7]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[8]  E. White Thalamocortical synaptic relations: A review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex , 1979, Brain Research Reviews.

[9]  Andreas Burkhalter,et al.  Microcircuitry of forward and feedback connections within rat visual cortex , 1996, The Journal of comparative neurology.

[10]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[11]  A Keller,et al.  Intrinsic synaptic organization of the motor cortex. , 1993, Cerebral cortex.

[12]  J. Deuchars,et al.  Innervation of burst firing spiny interneurons by pyramidal cells in deep layers of rat somatomotor cortex: Paired intracellular recordings with biocytin filling , 1995, Neuroscience.

[13]  S. Wise,et al.  Cells of origin and terminal distribution of descending projections of the rat somatic sensory cortex , 1977, The Journal of comparative neurology.

[14]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. I. Establishment of cell classes , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  H. Markram,et al.  Frequency and Dendritic Distribution of Autapses Established by Layer 5 Pyramidal Neurons in the Developing Rat Neocortex: Comparison with Synaptic Innervation of Adjacent Neurons of the Same Class , 1996, The Journal of Neuroscience.

[16]  A. Thomson,et al.  Voltage-dependent currents prolong single-axon postsynaptic potentials in layer III pyramidal neurons in rat neocortical slices. , 1988, Journal of neurophysiology.

[17]  K. Rockland,et al.  Divergent feedback connections from areas V4 and TEO in the macaque , 1994, Visual Neuroscience.

[18]  A. Hendrickson,et al.  Discrete reduction patterns of parvalbumin and calbindin D-28k immunoreactivity in the dorsal lateral geniculate nucleus and the striate cortex of adult macaque monkeys after monocular enucleation , 1994, Visual Neuroscience.

[19]  C D Woody,et al.  Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures. , 1993, Journal of neurophysiology.

[20]  Asaf Keller,et al.  Synaptic relationships involving local axon collaterals of pyramidal neurons in the cat motor cortex , 1993, The Journal of comparative neurology.

[21]  J. B. Levitt,et al.  Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. , 1993, Cerebral cortex.

[22]  J. Deuchars,et al.  Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat neocortex. , 1996, The Journal of physiology.

[23]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[24]  A. Thomson,et al.  A local circuit neocortical synapse that operates via both NMDA and non‐NMDA receptors , 1989, British journal of pharmacology.

[25]  J. Deuchars,et al.  Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically. , 1993, Journal of neurophysiology.

[26]  J. Deuchars,et al.  Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. , 1997, Cerebral cortex.

[27]  H. Markram,et al.  Redistribution of synaptic efficacy between neocortical pyramidal neurons , 1996, Nature.

[28]  A. Thomson,et al.  Fluctuations in pyramid-pyramid excitatory postsynaptic potentials modified by presynaptic firing pattern and postsynaptic membrane potential using paired intracellular recordings in rat neocortex , 1993, Neuroscience.

[29]  E. White,et al.  Intrinsic circuitry: Synapses involving the local axon collaterals of corticocortical projection neurons in the mouse primary somatosensory cortex , 1990, The Journal of comparative neurology.

[30]  C. Blakemore,et al.  Pyramidal neurons in layer 5 of the rat visual cortex. I. Correlation among cell morphology, intrinsic electrophysiological properties, and axon targets , 1994, The Journal of comparative neurology.

[31]  E. White,et al.  A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic projection cells in mouse SmI cortex , 1982, Journal of neurocytology.

[32]  J Deuchars,et al.  Relationships between morphology and physiology of pyramid‐pyramid single axon connections in rat neocortex in vitro. , 1994, The Journal of physiology.

[33]  D. McCormick,et al.  Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by norepinephrine, acetylcholine, and 1S,3R- ACPD , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  E. White,et al.  Synapses made by axons of callosal projection neurons in mouse somatosensory cortex: Emphasis on intrinsic connections , 1991, The Journal of comparative neurology.

[35]  A. Thomson Activity‐dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro , 1997, The Journal of physiology.

[36]  Colin Blakemore,et al.  Patterns of Local Connectivity in the Neocortex , 1993, Neural Computation.

[37]  E. White,et al.  Intrinsic circuitry involving the local axon collaterals of corticothalamic projection cells in mouse SmI cortex , 1987, The Journal of comparative neurology.

[38]  J. B. Levitt,et al.  Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: Anatomy of interlaminar projections , 1994, Visual Neuroscience.

[39]  P. Somogyi,et al.  Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex. , 1997, The Journal of physiology.

[40]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  C D Woody,et al.  Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. I. Patterns of firing activity and synaptic responses. , 1993, Journal of neurophysiology.

[42]  B. Connors,et al.  Repetitive burst-firing neurons in the deep layers of mouse somatosensory cortex , 1989, Neuroscience Letters.

[43]  H. Kuypers,et al.  Differential laminar distribution of corticothalamic neurons projecting to the VL and the center median. An HRP study in the cynomolgus monkey , 1978, Brain Research.

[44]  J. Tigges,et al.  Subcortical projections, cortical associations, and some intrinsic interlaminar connections of the striate cortex in the squirrel monkey (Saimiri) , 1970, The Journal of comparative neurology.

[45]  C. Blakemore,et al.  Single-fibre EPSPs in layer 5 of rat visual cortex in vitro. , 1993, Neuroreport.

[46]  A. Burkhalter,et al.  Intrinsic connections of rat primary visual cortex: Laminar organization of axonal projections , 1989, The Journal of comparative neurology.

[47]  J. O'leary,et al.  Structure of the area striata of the cat , 1941 .

[48]  I Fujita,et al.  Intrinsic connections in the macaque inferior temporal cortex , 1996, The Journal of comparative neurology.

[49]  P. Goldman-Rakic,et al.  Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey , 1995, The Journal of comparative neurology.