Computational design of molecules for an all-quinone redox flow battery

We demonstrate a successful high-throughput screening approach for the discovery of inexpensive, redox-active quinone molecules for organic-based aqueous flow batteries.

[1]  Rajeev S. Assary,et al.  Investigation of the redox chemistry of anthraquinone derivatives using density functional theory. , 2014, The journal of physical chemistry. A.

[2]  Ib Chorkendorff,et al.  2-Photon tandem device for water splitting: comparing photocathode first versus photoanode first designs , 2014 .

[3]  Edward O. Pyzer-Knapp,et al.  Predicted crystal energy landscapes of porous organic cages , 2014 .

[4]  Sally M. Benson,et al.  Can we afford storage? A dynamic net energy analysis of renewable electricity generation supported by energy storage , 2014 .

[5]  Alán Aspuru-Guzik,et al.  Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry – the Harvard Clean Energy Project , 2014 .

[6]  Michael P. Marshak,et al.  A metal-free organic–inorganic aqueous flow battery , 2014, Nature.

[7]  I. Honma,et al.  Metal-free aqueous redox capacitor via proton rocking-chair system in an organic-based couple , 2014, Scientific Reports.

[8]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[9]  Gus L. W. Hart,et al.  Computational materials science: Substitution with vision , 2012, Nature.

[10]  John B. O. Mitchell,et al.  First-Principles Calculation of the Intrinsic Aqueous Solubility of Crystalline Druglike Molecules. , 2012, Journal of chemical theory and computation.

[11]  Zunyao Wang,et al.  Investigation on Intramolecular Hydrogen Bond and Some Thermodynamic Properties of Polyhydroxylated Anthraquinones , 2012 .

[12]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[13]  P. Manisankar,et al.  Electrocatalytic properties of glassy carbon electrodes modified with hydroxy derivatives of 9,10-anthraquinone for oxygen reduction reaction , 2012, Ionics.

[14]  Christopher A. Hunter,et al.  Virtual cocrystal screening , 2011 .

[15]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[16]  Garry R. Buettner,et al.  Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide. , 2010, Free radical biology & medicine.

[17]  Chun-Hua Wang,et al.  Accurate estimation of the one-electron reduction potentials of various substituted quinones in DMSO and CH3CN. , 2010, The Journal of organic chemistry.

[18]  A S Bondarenko,et al.  Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. , 2009, Nature chemistry.

[19]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[20]  John B. O. Mitchell,et al.  Predicting intrinsic aqueous solubility by a thermodynamic cycle. , 2008, Molecular pharmaceutics.

[21]  Michelle L Coote,et al.  Accurate calculation of absolute one-electron redox potentials of some para-quinone derivatives in acetonitrile. , 2007, The journal of physical chemistry. A.

[22]  Meilin Liu,et al.  Synthesis and properties of phosphonic acid-grafted hybrid inorganic–organic polymer membranes , 2006 .

[23]  J. R. T. Johnsson Wass,et al.  Quantum chemical modeling of the reduction of quinones. , 2006, The journal of physical chemistry. A.

[24]  P. Geerlings,et al.  Conceptual density functional theory. , 2003, Chemical reviews.

[25]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[26]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings , 1997 .

[27]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[28]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[29]  B. Honig,et al.  New Model for Calculation of Solvation Free Energies: Correction of Self-Consistent Reaction Field Continuum Dielectric Theory for Short-Range Hydrogen-Bonding Effects , 1996 .

[30]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[31]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[32]  B. Honig,et al.  Accurate First Principles Calculation of Molecular Charge Distributions and Solvation Energies from Ab Initio Quantum Mechanics and Continuum Dielectric Theory , 1994 .

[33]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[34]  P. Wardman,et al.  Reduction Potentials of One-Electron Couples Involving Free Radicals in Aqueous Solution , 1989 .

[35]  L. Fieser,et al.  REDUCTION POTENTIALS OF QUINONES. II. THE POTENTIALS OF CERTAIN DERIVATIVES OF BENZOQUINONE, NAPHTHOQUINONE AND ANTHRAQUINONE , 1924 .

[36]  J. M. Nelson,et al.  OXIDATION AND REDUCTION OF HYDROQUINONE AND QUINONE FROM THE STANDPOINT OF ELECTROMOTIVE-FORCE MEASUREMENTS. , 1921 .

[37]  Fang Wang,et al.  An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples , 2014 .

[38]  N. Trinajstic,et al.  Ground states of conjugated molecules—XVIII : Azepines and oxepines , 1970 .

[39]  L. Hammett The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives , 1937 .