Monte Carlo Simulations of Globular Cluster Evolution. I. Method and Test Calculations

We present a new parallel supercomputer implementation of the Monte Carlo method for simulating the dynamical evolution of globular star clusters. Our method is based on a modified version of Hénon's Monte Carlo algorithm for solving the Fokker-Planck equation. Our code allows us to follow the evolution of a cluster containing up to 5 × 105 stars to core collapse in ≲40 hours of computing time. In this paper we present the results of test calculations for clusters with equal-mass stars, starting from both Plummer and King model initial conditions. We consider isolated as well as tidally truncated clusters. Our results are compared to those obtained from approximate, self-similar analytic solutions, from direct numerical integrations of the Fokker-Planck equation, and from direct N-body integrations performed on a GRAPE-4 special-purpose computer with N = 16384. In all cases we find excellent agreement with other methods, establishing our new code as a robust tool for the numerical study of globular cluster dynamics using a realistic number of stars.

[1]  Simon F. Portegies Zwart,et al.  The Evolution of Globular Clusters in the Galaxy , 1999, astro-ph/9903366.

[2]  D. Lorimer,et al.  Observations of 20 Millisecond Pulsars in 47 Tucanae at 20 Centimeters , 1999, astro-ph/9911234.

[3]  G. Drukier,et al.  Anisotropic Fokker-Planck Models for the Evolution of Globular Star Clusters: The Core-Halo Connection , 1999 .

[4]  Hut,et al.  Astrophysics on the GRAPE family of special-purpose computers , 1998, Science.

[5]  S. Djorgovski,et al.  Hubble Space Telescope Observations of Galactic Globular Cluster Cores. I. NGC 6362 and NGC 6934 , 1999 .

[6]  B. Hansen,et al.  Neutron star retention and millisecond pulsar production in globular clusters , 1998 .

[7]  J. Ostriker,et al.  Effects of Tidal Shocks on the Evolution of Globular Clusters , 1998, astro-ph/9806245.

[8]  S. Zwart,et al.  The Disruption of Globular Star Clusters in the Galaxy: A Comparative Analysisbetween Fokker-Planck and N-Body Models , 1998, astro-ph/9805310.

[9]  M. Giersz Monte Carlo simulations of star clusters - I. First Results , 1998, astro-ph/9804127.

[10]  D. Heggie,et al.  Dynamical Simulations: Methods and Comparisons , 1997, astro-ph/9711191.

[11]  Toshikazu Ebisuzaki,et al.  GRAPE-4: A Massively Parallel Special-Purpose Computer for Collisional N-Body Simulations , 1997 .

[12]  Koji Takahashi Fokker-Planck Models of Star Clusters with Anisotropic Velocity Distributions III. Multi-mass Clusters , 1997, astro-ph/9703190.

[13]  C. Bailyn,et al.  Hubble Space Telescope Observations of the Post-Core-Collapse Globular Cluster NGC 6752. II. A Large Main-Sequence Binary Population , 1997 .

[14]  I. King,et al.  Deep HST/FOC Imaging of the Central Density Cusp of the Globular Cluster M15 , 1997, astro-ph/9701030.

[15]  J. Ostriker,et al.  Destruction of the Galactic Globular Cluster System , 1996, astro-ph/9603042.

[16]  M. Giersz,et al.  A stochastic Monte Carlo approach to modelling of real star cluster evolution — I. The model , 1996 .

[17]  J. Makino Postcollapse Evolution of Globular Clusters , 1996, astro-ph/9608160.

[18]  G. Quinlan The time-scale for core collapse in spherical star clusters , 1996, astro-ph/9606182.

[19]  P. Hut The Role of Binaries in the Dynamical Evolution of the Core of a Globular Cluster , 1996, astro-ph/9605019.

[20]  D. Heggie,et al.  Binary--Single-Star Scattering. VII. Hard Binary Exchange Cross Sections for Arbitrary Mass Ratios: Numerical Results and Semianalytic FITS , 1996, astro-ph/9604016.

[21]  Puragra Guhathakurta,et al.  Globular Cluster Photometry With the Hubble Space Telescope. V. WFPC Study of M15's Central density Cusp , 1995, astro-ph/9512015.

[22]  Pawan Kumar,et al.  Nonlinear Damping of Oscillations in Tidal-Capture Binaries , 1995, astro-ph/9509112.

[23]  Koji Takahashi Fokker-Planck Models of Star Clusters with Anisotropic Velocity Distributions II. Post-Collapse Evolution , 1995, astro-ph/9507040.

[24]  Jeremiah P. Ostriker,et al.  Dynamical Evolution of Globular Clusters , 1996 .

[25]  A. Lyne,et al.  Millisecond pulsars in the globular cluster 47 Tucanae , 1995 .

[26]  I. King,et al.  HST observations of the core of the globular cluster NGC 6624 , 1995 .

[27]  E. Phinney,et al.  Dynamics and Interactions of Binaries and Neutron Stars in Globular Clusters , 1994, astro-ph/9412078.

[28]  Charles D. Bailyn,et al.  Blue Stragglers and Other Stellar Anomalies: Implications for the Dynamics of Globular Clusters , 1995 .

[29]  Piet Hut,et al.  Star cluster evolution with primordial binaries. 3: Effect of the Galactic tidal field , 1994 .

[30]  S. Rappaport,et al.  Predictions of a population of cataclysmic variables in globular clusters , 1994 .

[31]  J. Breeden,et al.  The onset of gravothermal oscillations in globular cluster evolution , 1994 .

[32]  D. Heggie,et al.  Statistics of N-body simulations – I. Equal masses before core collapse , 1993, astro-ph/9305008.

[33]  D. Heggie,et al.  On the exponential instability of N-body systems , 1993 .

[34]  Junichiro Makino,et al.  Discreteness Noise versus Force Errors in N-Body Simulations: Erratum , 1993 .

[35]  E. S. Phinney,et al.  BINARIES IN GLOBULAR CLUSTERS , 1992, astro-ph/9710262.

[36]  P. Hut,et al.  The Evolution of a primordial binary population in a globular cluster , 1992 .

[37]  C. Kochanek The dynamical evolution of tidal capture binaries , 1992 .

[38]  Junichiro Makino,et al.  Star cluster evolution with primordial binaries. II, Detailed analysis , 1991 .

[39]  J. Goodman,et al.  Fokker-Planck calculations of star clusters with primordial binaries , 1991 .

[40]  Junichiro Makino,et al.  Star cluster evolution with primordial binaries. I. A comparative study , 1990 .

[41]  Martin D. Weinberg,et al.  Evolution of globular clusters in the Galaxy , 1990 .

[42]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[43]  D. Heggie,et al.  Two homological models for the evolution of star clusters , 1988 .

[44]  J. Ostriker,et al.  Evolution of N-body systems with tidally captured binaries through the core collapse phase , 1987 .

[45]  Piet Hut,et al.  Use of Supercomputers in Stellar Dynamics , 1986 .

[46]  S. Shapiro,et al.  Tidal Heating of Globular Clusters , 1986 .

[47]  H. Cohn,et al.  Realistic models for evolving globular clusters: core collapse with a mass spectrum , 1986 .

[48]  Robert D. Mathieu,et al.  Standardised units and time scales , 1986 .

[49]  D. Sugimoto,et al.  Post-collapse evolution of globular clusters , 1983 .

[50]  S. L. Shapiro,et al.  Star clusters containing massive central black holes. IV. Galactic tidal fields , 1982 .

[51]  H. Cohn,et al.  Late core collapse in star clusters and the gravothermal instability , 1980 .

[52]  P. P. Eggleton,et al.  On the consequences of the gravothermal catastrophe , 1980 .

[53]  H. Cohn,et al.  Numerical integration of the Fokker-Planck equation and the evolution of star clusters , 1979 .

[54]  S. Shapiro,et al.  The distribution and consumption rate of stars around a massive, collapsed object , 1977 .

[55]  M. Hénon Monte Carlo models of star clusters , 1971 .

[56]  Stuart L. Shapiro,et al.  Random Gravitational Encounters and the Evolution of Spherical Systems. III. Halo , 1971 .

[57]  J. S. Chang,et al.  A practical difference scheme for Fokker-Planck equations☆ , 1970 .

[58]  Richard M. West,et al.  Highlights of astronomy , 1968 .

[59]  Ivan R. King,et al.  The structure of star clusters. III. Some simple dvriamical models , 1966 .