Dimer statistics of honeycomb lattices on Klein bottle, Möbius strip and cylinder
暂无分享,去创建一个
[1] R. Fowler,et al. An attempt to extend the statistical theory of perfect solutions , 1937 .
[2] P. W. Kasteleyn. The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .
[3] M. Fisher. Statistical Mechanics of Dimers on a Plane Lattice , 1961 .
[4] M. Fisher,et al. Dimer problem in statistical mechanics-an exact result , 1961 .
[5] Douglas J. Klein,et al. Dimer coverings and Kekulé structures on honeycomb lattice strips , 1986 .
[6] S. J. Cyvin,et al. Kekule Structures in Benzenoid Hydrocarbons , 1988 .
[7] J. Brunvoll,et al. Kekulé structure counts in coronoid hydrocarbons: A general solution , 1990 .
[8] S. Iijima. Helical microtubules of graphitic carbon , 1991, Nature.
[9] Carsten Thomassen,et al. Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface , 1991 .
[10] P. Ajayan,et al. Large-scale synthesis of carbon nanotubes , 1992, Nature.
[11] M. Desainte-Catherine,et al. A honeycomb graph perfect matchings enumeration , 1993 .
[12] Douglas J. Klein,et al. Resonance in Elemental Benzenoids , 1996, Discret. Appl. Math..
[13] F. Y. Wu,et al. Dimer statistics on the Möbius strip and the Klein bottle , 1999, cond-mat/9906154.
[14] Glenn Tesler,et al. Matchings in Graphs on Non-orientable Surfaces , 2000, J. Comb. Theory, Ser. B.
[15] Wentao T. Lu,et al. Close-packed dimers on nonorientable surfaces , 2001 .
[16] Uwe Prells,et al. Use of geometric algebra: compound matrices and the determinant of the sum of two matrices , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[17] Jianguo Qian,et al. On the number of Kekulé structures in capped zigzag nanotubes , 2005 .
[18] W. Shiu,et al. A complete characterization for k-resonant Klein-bottle polyhexes , 2008 .
[19] Y. Yeh,et al. Dimer problem on the cylinder and torus , 2008 .
[20] Heping Zhang,et al. 2-extendability of toroidal polyhexes and Klein-bottle polyhexes , 2009, Discret. Appl. Math..
[21] Lianzhu Zhang,et al. Enumeration of Perfect Matchings of a Type of Quadratic Lattice on the Torus , 2010, Electron. J. Comb..
[22] Heping Zhang,et al. 2-extendability and k-resonance of non-bipartite Klein-bottle polyhexes , 2011, Discret. Appl. Math..
[23] Fuliang Lu,et al. Dimer statistics on the Klein bottle , 2011 .