An application of optimization theory to the study of equilibria for games: a survey

This contribution is a survey about potential games and their applications. In a potential game the information that is sufficient to determine Nash equilibria can be summarized in a single function on the strategy space: the potential function. We show that the potential function enable the application of optimization theory to the study of equilibria. Potential games and their generalizations are presented. Two special classes of games, namely team games and separable games, turn out to be potential games. Several properties satisfied by potential games are discussed and examples from concrete situations as congestion games, global emission games and facility location games are illustrated.

[1]  Fioravante Patrone,et al.  Multicriteria games and potentials , 2007 .

[2]  Mark Voorneveld,et al.  Best-response potential games , 2000 .

[3]  Mark Voorneveld,et al.  Ideal equilibria in noncooperative multicriteria games , 2000, Math. Methods Oper. Res..

[4]  Yusuke Hino,et al.  An improved algorithm for detecting potential games , 2011, Int. J. Game Theory.

[5]  M. Slade What Does An Oligopoly Maximize , 1994 .

[6]  L. Blume The Statistical Mechanics of Strategic Interaction , 1993 .

[7]  Y. Ho,et al.  Informational properties of the Nash solutions of two stochastic nonzero-sum games , 1974 .

[8]  L. Mallozi,et al.  Infinite Hierarchical Potential Games , 2000 .

[9]  Mark Voorneveld,et al.  Congestion Games and Potentials Reconsidered , 1999, IGTR.

[10]  Stef Tijs,et al.  Introduction to Game Theory , 2003 .

[11]  Lina Mallozzi,et al.  Noncooperative facility location games , 2007, Oper. Res. Lett..

[12]  Huaglory Tianfield,et al.  Game-Theoretic Opportunistic Spectrum Sharing Strategy Selection for Cognitive MIMO Multiple Access Channels , 2011, IEEE Transactions on Signal Processing.

[13]  Asuman E. Ozdaglar,et al.  Flows and Decompositions of Games: Harmonic and Potential Games , 2010, Math. Oper. Res..

[14]  P. Pardalos,et al.  Pareto optimality, game theory and equilibria , 2008 .

[15]  Y. Ho,et al.  Informational properties of the Nash solutions of two stochastic nonzero-sum games , 1974 .

[16]  Jacques Periaux,et al.  Combining game theory and genetic algorithms with application to DDM-nozzle optimization problems , 2001 .

[17]  Panos M. Pardalos,et al.  Multilevel Optimization: Algorithms and Applications , 2012 .

[18]  E. Balder Remarks on Nash equilibria for games with additively coupled payoffs , 1995 .

[19]  R. Rosenthal A class of games possessing pure-strategy Nash equilibria , 1973 .

[20]  Marc Quincampoix,et al.  Deterministic differential Games under Probability Knowledge of Initial Condition , 2008, IGTR.

[21]  Coordinating choice in partial cooperative equilibrium , 2009 .

[22]  L. Shapley,et al.  Potential Games , 1994 .

[23]  S. Hart,et al.  Potential, value, and consistency , 1989 .

[24]  Paul W. Goldberg,et al.  The Complexity of Computing a Nash Equilibrium , 2009, SIAM J. Comput..

[25]  Fioravante Patrone,et al.  Game Practice : Contributions from Applied Game Theory , 2000 .

[26]  L. Shapley,et al.  REGULAR ARTICLEPotential Games , 1996 .

[27]  Mark Voorneveld,et al.  Sequential production situations and potentials , 2000 .

[28]  Lucia Pusillo Interactive decisions and potential games , 2008, J. Glob. Optim..

[29]  William H. Sandholm,et al.  Decompositions and potentials for normal form games , 2010, Games Econ. Behav..

[30]  Eligius M. T. Hendrix,et al.  Methods for computing Nash equilibria of a location-quantity game , 2008, Comput. Oper. Res..

[31]  Rodica Brânzei,et al.  Supermodular Games and Potential Games , 2003 .

[32]  Pradeep Dubey,et al.  Strategic complements and substitutes, and potential games , 2006, Games Econ. Behav..

[33]  Nikolai S. Kukushkin,et al.  Nash equilibrium in compact-continuous games with a potential , 2011, Int. J. Game Theory.

[34]  M. K. Jensen Aggregative games and best-reply potentials , 2010 .

[35]  Tim Roughgarden,et al.  Algorithmic Game Theory , 2007 .

[36]  Bezalel Peleg,et al.  Almost all equilibria in dominant strategies are coalition - proof , 1998 .

[37]  Takashi Ui,et al.  Robust Equilibria of Potential Games , 2001 .

[38]  Augusto Aubry,et al.  Non-cooperative code design in radar networks: a game-theoretic approach , 2013, EURASIP J. Adv. Signal Process..

[39]  Stef Tijs,et al.  Conflict and Cooperation in Symmetric Potential Games , 2008, IGTR.

[40]  Michael Finus,et al.  Game theory and international environmental cooperation: any practical application? , 2002 .

[41]  I. Milchtaich,et al.  Congestion Games with Player-Specific Payoff Functions , 1996 .