The Smart Sampling Kalman Filter with Symmetric Samples

Nonlinear Kalman Filters are powerful and widely-used techniques when trying to estimate the hidden state of a stochastic nonlinear dynamic system. In this paper, we extend the Smart Sampling Kalman Filter (S2KF) with a new point symmetric Gaussian sampling scheme. This not only improves the S2KF's estimation quality, but also reduces the time needed to compute the required optimal Gaussian samples drastically. Moreover, we improve the numerical stability of the sample computation, which allows us to accurately approximate a thousand-dimensional Gaussian distribution using tens of thousands of optimally placed samples. We evaluate the new symmetric S2KF by computing higher-order moments of standard normal distributions and investigate the estimation quality of the S2KF when dealing with symmetric measurement equations. Finally, extended object tracking based on many measurements per time step is considered. This high-dimensional estimation problem shows the advantage of the S2KF being able to use an arbitrary number of samples independent of the state dimension, in contrast to other state-of-the-art sample-based Kalman Filters.

[1]  Uwe D. Hanebeck,et al.  Extended Object Tracking with Random Hypersurface Models , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[2]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[3]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[4]  Ondrej Straka,et al.  Stochastic Integration Filter , 2013, IEEE Transactions on Automatic Control.

[5]  Herman Bruyninckx,et al.  Kalman filters for non-linear systems: a comparison of performance , 2004 .

[6]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[7]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[8]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[9]  Ming Xin,et al.  High-degree cubature Kalman filter , 2013, Autom..

[10]  Uwe D. Hanebeck,et al.  Efficient deterministic dirac mixture approximation of Gaussian distributions , 2013, 2013 American Control Conference.

[11]  Robert Babuska,et al.  Parametric Bayesian Filters for Nonlinear Stochastic Dynamical Systems: A Survey , 2013, IEEE Transactions on Cybernetics.

[12]  Ondrej Straka,et al.  Unscented Kalman filter with advanced adaptation of scaling parameter , 2014, Autom..

[13]  Uwe D. Hanebeck,et al.  Tracking 3D shapes in noisy point clouds with Random Hypersurface Models , 2012, 2012 15th International Conference on Information Fusion.

[14]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[16]  John B. Moore,et al.  Optimal State Estimation , 2006 .

[17]  Uwe D. Hanebeck,et al.  Progressive Gaussian filtering using explicit likelihoods , 2014, 17th International Conference on Information Fusion (FUSION).

[18]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[19]  Uwe D. Hanebeck,et al.  The Kernel-SME filter for multiple target tracking , 2012, Proceedings of the 16th International Conference on Information Fusion.

[20]  Ondřej Straka,et al.  The Development of a Randomised Unscented Kalman Filter , 2011 .

[21]  Uwe D. Hanebeck,et al.  Bayesian approach to direct pole estimation , 2014, 2014 European Control Conference (ECC).

[22]  U. Hanebeck,et al.  LRKF Revisited: The Smart Sampling Kalman Filter (S2KF) , 2015 .

[23]  Ángel F. García-Fernández,et al.  Iterated statistical linear regression for Bayesian updates , 2014, 17th International Conference on Information Fusion (FUSION).

[24]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[25]  Uwe D. Hanebeck,et al.  Deterministic Dirac mixture approximation of Gaussian mixtures , 2014, 17th International Conference on Information Fusion (FUSION).

[26]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[27]  Uwe D. Hanebeck,et al.  Modeling the target extent with multiplicative noise , 2012, 2012 15th International Conference on Information Fusion.

[28]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[29]  Uwe D. Hanebeck,et al.  Localized Cumulative Distributions and a multivariate generalization of the Cramér-von Mises distance , 2008, 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.

[30]  Petar M. Djuric,et al.  Gaussian particle filtering , 2003, IEEE Trans. Signal Process..

[31]  N. Oudjane,et al.  Progressive correction for regularized particle filters , 2000, Proceedings of the Third International Conference on Information Fusion.

[32]  Uwe D. Hanebeck,et al.  S2KF: The Smart Sampling Kalman Filter , 2013, Proceedings of the 16th International Conference on Information Fusion.

[33]  Charles E. Heckler,et al.  Applied Multivariate Statistical Analysis , 2005, Technometrics.

[34]  Uwe D. Hanebeck,et al.  Dirac mixture approximation of multivariate Gaussian densities , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[35]  Erik Blasch,et al.  Randomized unscented transform in state estimation of non-Gaussian systems: Algorithms and performance , 2012, 2012 15th International Conference on Information Fusion.