SHOT: Unique signatures of histograms for surface and texture description

Abstract This paper presents a local 3D descriptor for surface matching dubbed SHOT. Our proposal stems from a taxonomy of existing methods which highlights two major approaches, referred to as Signatures and Histograms, inherently emphasizing descriptiveness and robustness respectively. We formulate a comprehensive proposal which encompasses a repeatable local reference frame as well as a 3D descriptor, the latter featuring an hybrid structure between Signatures and Histograms so as to aim at a more favorable balance between descriptive power and robustness. A quite peculiar trait of our method concerns seamless integration of multiple cues within the descriptor to improve distinctiveness, which is particularly relevant nowadays due to the increasing availability of affordable RGB-D sensors which can gather both depth and color information. A thorough experimental evaluation based on datasets acquired with different types of sensors, including a novel RGB-D dataset, vouches that SHOT outperforms state-of-the-art local descriptors in experiments addressing descriptor matching for object recognition, 3D reconstruction and shape retrieval.

[1]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Chitra Dorai,et al.  COSMOS - A Representation Scheme for 3D Free-Form Objects , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Jitendra Malik,et al.  Recognizing Objects in Range Data Using Regional Point Descriptors , 2004, ECCV.

[4]  Hui Chen,et al.  3D free-form object recognition in range images using local surface patches , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[5]  Yu Zhong,et al.  Intrinsic shape signatures: A shape descriptor for 3D object recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[6]  Chin Seng Chua,et al.  Point Signatures: A New Representation for 3D Object Recognition , 1997, International Journal of Computer Vision.

[7]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[8]  Paul F. Whelan,et al.  Comparing 3D Descriptors for Local Search of Craniofacial Landmarks , 2012, ISVC.

[9]  SchieleBernt,et al.  Robust Object Detection with Interleaved Categorization and Segmentation , 2008 .

[10]  Leonidas J. Guibas,et al.  Estimating surface normals in noisy point cloud data , 2004, Int. J. Comput. Geom. Appl..

[11]  Michael H. Brill,et al.  Color appearance models , 1998 .

[12]  Federico Tombari,et al.  Performance Evaluation of 3D Keypoint Detectors , 2011, 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission.

[13]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[14]  Markus Vincze,et al.  A Global Hypotheses Verification Method for 3D Object Recognition , 2012, ECCV.

[15]  Nico Blodow,et al.  Aligning point cloud views using persistent feature histograms , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Zoltan-Csaba Marton,et al.  Tutorial: Point Cloud Library: Three-Dimensional Object Recognition and 6 DOF Pose Estimation , 2012, IEEE Robotics & Automation Magazine.

[17]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Luc Van Gool,et al.  Hough Transform and 3D SURF for Robust Three Dimensional Classification , 2010, ECCV.

[19]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[20]  Luigi di Stefano,et al.  On the repeatability of the local reference frame for partial shape matching , 2011, 2011 International Conference on Computer Vision.

[21]  Karthik Ramani,et al.  Three-dimensional shape searching: state-of-the-art review and future trends , 2005, Comput. Aided Des..

[22]  Florian Schmidt,et al.  3D Registration for Verification of Humanoid Justin's Upper Body Kinematics , 2012, 2012 Ninth Conference on Computer and Robot Vision.

[23]  Federico Tombari,et al.  A combined texture-shape descriptor for enhanced 3D feature matching , 2011, 2011 18th IEEE International Conference on Image Processing.

[24]  Gérard G. Medioni,et al.  Structural Indexing: Efficient 3-D Object Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Andrea Torsello,et al.  A Scale Independent Selection Process for 3D Object Recognition in Cluttered Scenes , 2013, International Journal of Computer Vision.

[26]  Li Zhang,et al.  Spacetime stereo: shape recovery for dynamic scenes , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[27]  Yosi Keller,et al.  Scale-Invariant Features for 3-D Mesh Models , 2012, IEEE Transactions on Image Processing.

[28]  Martial Hebert,et al.  Multi-scale interest regions from unorganized point clouds , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[29]  Remco C. Veltkamp,et al.  A survey of content based 3D shape retrieval methods , 2004, Proceedings Shape Modeling Applications, 2004..

[30]  José Miguel Salles Dias,et al.  Good Appearance and Shape Descriptors for Object Category Recognition , 2013, ISVC.

[31]  Cristina Conde,et al.  Automatic 3D Face Feature Points Extraction with Spin Images , 2006, ICIAR.

[32]  Dieter Fox,et al.  A large-scale hierarchical multi-view RGB-D object dataset , 2011, 2011 IEEE International Conference on Robotics and Automation.

[33]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[34]  Mohammed Bennamoun,et al.  On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes , 2009, International Journal of Computer Vision.

[35]  Bernt Schiele,et al.  Robust Object Detection with Interleaved Categorization and Segmentation , 2008, International Journal of Computer Vision.

[36]  Mohammed Bennamoun,et al.  A Novel Representation and Feature Matching Algorithm for Automatic Pairwise Registration of Range Images , 2005, International Journal of Computer Vision.

[37]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[38]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[39]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[40]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[41]  Radu Horaud,et al.  Keypoints and Local Descriptors of Scalar Functions on 2D Manifolds , 2012, International Journal of Computer Vision.

[42]  Mark D. Fairchild,et al.  Color Appearance Models , 1997, Computer Vision, A Reference Guide.

[43]  Mongi A. Abidi,et al.  Surface matching by 3D point's fingerprint , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[44]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[45]  Armin B. Cremers,et al.  Performance of histogram descriptors for the classification of 3D laser range data in urban environments , 2012, 2012 IEEE International Conference on Robotics and Automation.

[46]  Michael Werman,et al.  The Quadratic-Chi Histogram Distance Family , 2010, ECCV.

[47]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera , 2011, UIST.

[48]  Mohammed Bennamoun,et al.  Rotational Projection Statistics for 3D Local Surface Description and Object Recognition , 2013, International Journal of Computer Vision.

[49]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark (Figures 1 and 2) , 2004, Shape Modeling International Conference.

[50]  Ko Nishino,et al.  Scale-Dependent/Invariant Local 3D Shape Descriptors for Fully Automatic Registration of Multiple Sets of Range Images , 2008, ECCV.

[51]  Markus Vincze,et al.  3DNet: Large-scale object class recognition from CAD models , 2012, 2012 IEEE International Conference on Robotics and Automation.

[52]  Ilkay Ulusoy,et al.  3D Object Representation Using Transform and Scale Invariant 3D Features , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[53]  Luís A. Alexandre 3D Descriptors for Object and Category Recognition: a Comparative Evaluation , 2012 .

[54]  Szymon Rusinkiewicz,et al.  Spacetime Stereo: A Unifying Framework for Depth from Triangulation , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Luc Van Gool,et al.  Orientation invariant 3D object classification using hough transform based methods , 2010, 3DOR '10.

[56]  R. Bro,et al.  Resolving the sign ambiguity in the singular value decomposition , 2008 .

[57]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[58]  Leonidas J. Guibas,et al.  Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.

[59]  Chandra Kambhamettu,et al.  Abstraction and Generalization of 3D Structure for Recognition in Large Intra-Class Variation , 2010, ACCV.