Size Effect on Properties of Varistors Made From Zinc Oxide Nanoparticles Through Low Temperature Spark Plasma Sintering

Conditions for the elaboration of nanostructured varistors by Spark Plasma Sintering (SPS) are investigated, using 8 nm zinc oxide nanoparticles synthesized following an organometallic approach. A binary system constituted of zinc oxide and bismuth oxides nanoparticles is used for this purpose. It is synthesized at room temperature in an organic solution through the hydrolysis of dicyclohexylzinc and bismuth acetate precursors. Sintering of this material is performed by SPS at various temperatures and dwell times. The determination of the microstructure and the chemical composition of the as prepared ceramics are based on Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) analysis. The non linear electrical characteristics are evidenced by current-voltage (I-V) measurements. The breakdown voltage of these nanostructured varistors strongly depends on grain sizes. The results show for the first time that, nanostructured varistors are obtained by SPS at sintering temperatures ranging from 550 to 600°C.

[1]  Doh-Yeon Kim,et al.  Pore-boundary separation behavior during sintering of pure and Bi2O3-doped ZnO ceramics , 2004 .

[2]  G. Dunlop,et al.  Development of interfacial microstructure during cooling of a ZnO varistor material , 1989 .

[3]  T. Gupta Application of Zinc Oxide Varistors , 1990 .

[4]  E. Snoeck,et al.  Spontaneous formation of ordered 2D and 3D superlattices of ZnO nanocrystals. , 2005, Small.

[5]  Zhongtai Zhang,et al.  Characterisation of ZnO-based varistors prepared from nanometre Precursor powders , 1999 .

[6]  Suresh C. Pillai,et al.  The Effect of Processing Conditions on Varistors Prepared From Nanocrystalline ZnO , 2003 .

[7]  Slavko Bernik,et al.  Microstructural and electrical characteristics of Y2O3-doped ZnO–Bi2O3-based varistor ceramics , 2001 .

[8]  R. Chaim,et al.  Sintering and densification of nanocrystalline ceramic oxide powders: A review , 2008 .

[9]  D. Shah,et al.  Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol ot microemulsion , 1997 .

[10]  N. Sirikulrat,et al.  Effects of cobalt doping on nonlinearity of zinc oxide , 2006 .

[11]  J. Fernández,et al.  Compact shape as a relevant parameter for sintering ZnO-Bi2O3 based varistors , 2004 .

[12]  Y. Hong,et al.  The electrical properties of Mn3O4-doped ZnO , 2004 .

[13]  C. Elissalde,et al.  Tailoring Dielectric Properties of Multilayer Composites Using Spark Plasma Sintering , 2007 .

[14]  S. Ezhilvalavan,et al.  Dependence of non-linearity coefficients on transition metal oxide concentration in simplified compositions of ZnO+Bi2O3+MO varistor ceramics (M=Co or Mn) , 1996 .

[15]  F. Bosc,et al.  Nanocrystalline apatites: From powders to biomaterials , 2009 .

[16]  Y. Takada,et al.  Continuous existence of bismuth at grain boundaries of zinc oxide varistor without intergranular phase , 2005 .

[17]  K. Khor,et al.  Spark-plasma-sintering (SPS) of nanostructured and submicron titanium oxide powders , 2004 .

[18]  K. Ellmer Resistivity of polycrystalline zinc oxide films: current status and physical limit , 2001 .

[19]  R. Chaim,et al.  Densification of nanocrystalline Y2O3 ceramic powder by spark plasma sintering , 2009 .

[20]  E. Sonder,et al.  Effect of oxidizing and reducing atmospheres at elevated temperatures on the electrical properties of zinc oxide varistors , 1983 .

[21]  A. Mukherjee,et al.  Plasma activated sintering of nanocrystalline γ-Al2O3 , 1995 .

[22]  Y. Chiang,et al.  Bi segregation at ZnO grain boundaries in equilibrium with Bi2O3ZnO liquid , 1995 .

[23]  X. Donglin,et al.  Preparation and properties of ZnO-based ceramic films for low-voltage varistors by novel sol-gel process , 2001 .

[24]  S. Ezhilvalavan,et al.  Effect of antimony oxide stoichiometry on the nonlinearity of zinc oxide varistor ceramics , 1997 .

[25]  A. Senos,et al.  Varistor behaviour of Mn-doped ZnO ceramics , 2002 .

[26]  D. Clarke The microstructural location of the intergranular metal‐oxide phase in a zinc oxide varistor , 1977 .

[27]  M. Nygren,et al.  Transparent nanocrystalline MgO by rapid and low-temperature spark plasma sintering , 2004 .

[28]  G. Dunlop,et al.  Characterization of individual interfacial barriers in a ZnO varistor material , 1989 .

[29]  J. Tartaj,et al.  A Strategic Two‐Stage Low‐Temperature Thermal Processing Leading to Fully Dense and Fine‐Grained Doped‐ZnO Varistors , 2002 .

[30]  M. Kahn,et al.  Room-temperature organometallic synthesis of soluble and crystalline ZnO nanoparticles of controlled size and shape. , 2003, Angewandte Chemie.

[31]  L. Gao,et al.  Photoluminescence Properties of Nanocrystalline ZnO Ceramics Prepared by Pressureless Sintering and Spark Plasma Sintering , 2005 .

[32]  G. Dunlop,et al.  The effect of Bi2O3 content on the microstructure and electrical properties of ZnO varistor materials , 1989 .

[33]  D. Suvorov,et al.  Phase equilibrium relations in the binary system Bi2O3-ZnO , 2004 .

[34]  Yin-Yi Han,et al.  Sol-gel process doped ZnO nanopowders and their grain growth , 1997 .

[35]  M. Nygren,et al.  Microstructural prototyping of ceramics by kinetic engineering: applications of spark plasma sintering. , 2005, Chemical record.

[36]  William G. Morris,et al.  Electrical Properties of ZnO‐Bi2O3 Ceramics , 1973 .

[37]  Zhong Lin Wang Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing , 2007 .

[38]  Yuanhua Lin,et al.  Properties of ZnO Varistors Prepared with Nano-Sized Powders , 2008 .

[39]  F. Greuter Electrically active interfaces in ZnO varistors , 1995 .

[40]  Z. A. Munir,et al.  Fundamental investigations on the spark plasma sintering/synthesis process: I. Effect of dc pulsing on reactivity , 2005 .

[41]  N. Sirikulrat,et al.  Properties and intergranular phase analysis of a ZnO–CoO–Bi2O3 varistor , 2006 .

[42]  April D. McMillan,et al.  Voronoi network model of ZnO varistors with different types of grain boundaries , 1996 .

[43]  K. Niihara,et al.  Preparation and electric properties of dense nanocrystalline zinc oxide ceramics , 2004 .

[44]  T. Nishimura,et al.  Fabrication of β-sialon nanoceramics by high-energy mechanical milling and spark plasma sintering , 2005 .

[45]  J. Wong Nature of Intergranular Phase in Nonohmic ZnO Ceramics Containing 0.5 Mol% Bi2O3 , 1974 .

[46]  David C. Look,et al.  P‐type doping and devices based on ZnO , 2004 .

[47]  G. Spinolo,et al.  Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part II. Characterization studies , 2004 .

[48]  Helmut Stiebig,et al.  Transparent conducting oxide films for thin film silicon photovoltaics , 2007 .

[49]  Zhe Zhao,et al.  Ferroelectric properties of dense nanocrystalline BaTiO3 ceramics , 2004 .

[50]  Myrtil L. Kahn,et al.  Size‐ and Shape‐Control of Crystalline Zinc Oxide Nanoparticles: A New Organometallic Synthetic Method , 2005 .