Early embryogenesis of potential bilaterian animals with polar lobe formation from the Ediacaran Weng'an Biota, South China

Exquisite phosphatized eggs and embryos from the Ediacaran Doushantuo Formation (Weng'an biota, ca.580Ma) of Guizhou, southwestern China have greatly expanded our knowledge of the diversity and palaeobiology of early multicellular animals, and contributed to our understanding of the origins of sponge, cnidarian and other potential eumetazoans. However, the key question of whether triploblastic bilaterian animals are present in the Weng'an biota remains controversial. In the present study, scanning electronic microscopy (SEM) and propagation phase contrast synchrotron X-ray microtomography (PPC-SR-mu CT) are used to prove the presence of bilaterian embryos in the Doushantuo phosphorite. Based on the well preserved connection neck between the polar lobe (PL) and the egg or blastomere as shown by the high-resolution internal sections conducted by PPC-SR-mu CT, three types of PL-forming embryos (calabash-shaped (1-cell stage), trefoil and L-shaped (2-cell stage)) have been confirmed in the Doushantuo phosphorite. These PL-forming embryos are distinct from the PL-forming-like embryos, multicellular algal fossils, and even diagenetic artifacts in morphology and anatomy. In addition, an early developmental sequence for these PL-forming embryos can be inferred for the first time. The results not only provide more convincing evidence for animal affinities among the Doushantuo embryos, but also indicate that polar lobes, which break the symmetrical distribution of morphogenetic determinants in cytoplasm during the early developmental stages of living bilaterian embryos, are a conserved device that occurred already during animal embryogenesis even in the Precambrian. (C) 2011 Elsevier B.V. All rights reserved.

[1]  A. Sessions,et al.  A Stratified Redox Model for the Ediacaran Ocean , 2010, Science.

[2]  E. Davidson Spatial mechanisms of gene regulation in metazoan embryos. , 1991, Development.

[3]  Pfluger,et al.  Triploblastic animals more than 1 billion years ago: trace fossil evidence from india , 1998, Science.

[4]  G. Conrad,et al.  Polar lobe formation and cytokinesis in fertilized eggs of Ilyanassa obsoleta. II. Large bleb formation caused by high concentrations of exogenous calcium ions. , 1974, Developmental biology.

[5]  R. Raff,et al.  Experimental taphonomy shows the feasibility of fossil embryos. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Feng Gao,et al.  Phase contrast synchrotron X-ray microtomography of Ediacaran (Doushantuo) metazoan microfossils: Phylogenetic diversity and evolutionary implications , 2009 .

[7]  N. H. Verdonk The effect of removing the polar lobe in centrifuged eggs of Dentalium. , 1968, Journal of embryology and experimental morphology.

[8]  L. Tertoolen,et al.  Regional differences in the lateral mobility of plasma membrane lipids in a molluscan embryo. , 1985, Developmental biology.

[9]  M. Martindale,et al.  Cell specification and the role of the polar lobe in the gastropod mollusc Crepidula fornicata. , 2006, Developmental biology.

[10]  E. Davidson,et al.  Set-aside cells in maximal indirect development: evolutionary and developmental significance. , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[11]  Marco Stampanoni,et al.  Synchrotron X-ray tomographic microscopy of fossil embryos , 2006, Nature.

[12]  S. Joye,et al.  Evidence of giant sulphur bacteria in Neoproterozoic phosphorites , 2007, Nature.

[13]  N. H. Verdonk The relation of the two blastomeres to the polar lobe in Dentalium. , 1968, Journal of embryology and experimental morphology.

[14]  Zhe‐Xi Luo Doushantuo Fossils: Life on the Eve of Animal Radiation , 2005, Journal of Paleontology.

[15]  A. Knoll,et al.  Eumetazoan fossils in terminal proterozoic phosphorites? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[16]  D. Erwin Early origin of the bilaterian developmental toolkit , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[17]  L. Timmermans,et al.  Experimental studies on morphogenetic factors localized in the first and the second polar lobe of Dentalium eggs. , 1970, Journal of embryology and experimental morphology.

[18]  A. C. Clement Experimental studies on germinal localization in Ilyanassa. I. The role of the polar lobe in determination of the cleavage pattern and its influence in later development , 1952 .

[19]  Akiko Okusu Embryogenesis and Development of Epimenia babai (Mollusca Neomeniomorpha) , 2002, The Biological Bulletin.

[20]  R. Desrosiers,et al.  Early developmental events following fertilization in the giant scallop Placopecten magellanicus , 1996 .

[21]  E. Davidson,et al.  Regulatory evolution and the origin of the bilaterians. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[22]  E. Davidson,et al.  Quantitative assessment of Hox complex expression in the indirect development of the polychaete annelid Chaetopterus sp. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[23]  M. Allen EMBRYOLOGICAL DEVELOPMENT OF THE SYLLID, AUTOLYTUS FASCIATUS (BOSC) (CLASS POLYCHAETA) , 1964 .

[24]  M. Fedonkin,et al.  The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism , 1997, Nature.

[25]  F. Delsuc,et al.  The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A. C. Clement Experimental studies on germinal localization in Ilyanassa. II. The development of isolated blastomeres , 1956 .

[27]  M. Martindale,et al.  Conservation and innovation in spiralian development , 1999, Hydrobiologia.

[28]  J. Cotton,et al.  The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[29]  A. Knoll,et al.  PHOSPHATIZED ANIMAL EMBRYOS FROM THE NEOPROTEROZOIC DOUSHANTUO FORMATION AT WENG'AN, GUIZHOU, SOUTH CHINA , 2000 .

[30]  R. Raff,et al.  Time, space, and pattern in embryonic development , 1983 .

[31]  N. H. Verdonk,et al.  The structure of a morphogenetic cytoplasm, present in the polar lobe of Bithynia tentaculata (Gastropoda, Prosobranchia). , 1974, Journal of embryology and experimental morphology.

[32]  E. Zouros,et al.  Differential segregation patterns of sperm mitochondria in embryos of the blue mussel (Mytilus edulis). , 2004, Genetics.

[33]  S. Xiao,et al.  SYSTEMATIC DESCRIPTION AND PHYLOGENETIC AFFINITY OF TUBULAR MICROFOSSILS FROM THE EDIACARAN DOUSHANTUO FORMATION AT WENG’AN, SOUTH CHINA , 2008 .

[34]  K. Peterson,et al.  Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Hagadorn,et al.  Rare helical spheroidal fossils from the Doushantuo Lagerstätte: Ediacaran animal embryos come of age? , 2007 .

[36]  Feng Gao,et al.  Complex embryos displaying bilaterian characters from Precambrian Doushantuo phosphate deposits, Weng'an, Guizhou, China , 2009, Proceedings of the National Academy of Sciences.

[37]  J. J. Henry,et al.  MAPK activation and the specification of the D quadrant in the gastropod mollusc, Crepidula fornicata. , 2008, Developmental biology.

[38]  J. Kirschvink,et al.  Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for metazoan evolution. , 2000, Science.

[39]  E. Wilson Experimental studies on germinal localization , 1904 .

[40]  Scott F. Gilbert,et al.  Embryology : constructing the organism , 1997 .

[41]  A. Bravin,et al.  Applications of X-ray synchrotron microtomography for non-destructive 3 D studies of paleontological specimens , 2006 .

[42]  R. Burke,et al.  Development and Larval Morphology of the Spiny Scallop, Chlamys hastata , 1988 .

[43]  E. Davidson,et al.  Bilaterian origins: significance of new experimental observations. , 2000, Developmental biology.

[44]  Jun-yuan Chen,et al.  Precambrian animal life: Taphonomy of phosphatized metazoan embryos from southwest China , 2005 .

[45]  L. Nagy,et al.  MAPK signaling by the D quadrant embryonic organizer of the mollusc Ilyanassa obsoleta. , 2001, Development.

[46]  E. Wilson,et al.  Experimental studies on gasteropod development , 1896, Archiv für Entwicklungsmechanik der Organismen.

[47]  Marco Stampanoni,et al.  Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales , 2007, Nature.

[48]  Mark A McPeek,et al.  Estimating metazoan divergence times with a molecular clock. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Judith W. Lundelius,et al.  Evolutionary implications of the mode of D quadrant specification in coelomates with spiral cleavage , 1992 .

[50]  E. Davidson,et al.  Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian , 2004, Science.

[51]  M. R. Dohmen,et al.  The ultrastructure of the polar lobe of Crepidula fornicata (Gastropoda, Prosobranchia). , 1975, Journal of embryology and experimental morphology.

[52]  E. Davidson,et al.  Origin of Bilaterian Body Plans: Evolution of Developmental Regulatory Mechanisms , 1995, Science.

[53]  A. Ivantsov,et al.  New data on Kimberella, the Vendian mollusc-like organism (White Sea region, Russia): palaeoecological and evolutionary implications , 2007 .

[54]  G. Conrad,et al.  Microiontophoretic injection of calcium ions or of cyclic AMP causes rapid shape changes in fertilized eggs of Ilyanassa obsoleta. , 1977, Developmental biology.

[55]  E. Davidson,et al.  Precambrian animal life: probable developmental and adult cnidarian forms from Southwest China. , 2002, Developmental biology.

[56]  G. Conrad Control of Polar Lobe Formation in Fertilized Eggs of Ilyanassa obsoleta Stimpson , 1973 .

[57]  A. C. Clement Development of Ilyanassa following removal of the D macromere at successive cleavage stages , 1962 .

[58]  J. Render Development of Iiyanassa obsoleta embryos after equal distribution of polar lobe material at first cleavage. , 1989, Developmental biology.

[59]  A. Knoll,et al.  Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite , 1998, Nature.

[60]  P. Donoghue Palaeontology: Embryonic identity crisis , 2007, Nature.

[61]  E. Davidson,et al.  An integrated view of precambrian eumetazoan evolution. , 2009, Cold Spring Harbor symposia on quantitative biology.

[62]  Maoyan Zhu,et al.  Integrated Ediacaran (Sinian) chronostratigraphy of South China , 2007 .

[63]  S. Wilkins,et al.  Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object , 2002, Journal of microscopy.

[64]  G. Conrad,et al.  Polar lobe formation and cytokinesis in fertilized eggs of Ilyanassa obsoleta. I. Ultrastructure and effects of cytochalasin B and colchicine. , 1974, Developmental biology.

[65]  G. Conrad,et al.  Polar lobe formation and cytokinesis in fertilized eggs of Ilyanassa obsoleta. III. Large bleb formation caused by Sr2+, ionophores X537A and A23187, and compound 48/80. , 1980, Developmental biology.

[66]  Xunlai Yuan,et al.  Interpreting Late Precambrian Microfossils , 1998, Science.

[67]  R. Raff,et al.  MICROFILAMENTS IN THE POLAR LOBE CONSTRICTION OF FERTILIZED EGGS OF ILYANASSA OBSOLETA , 1973, The Journal of cell biology.

[68]  P. Oliveri,et al.  Environmental Controls on the Taphonomy of Phosphatized Animals and Animal Embryos from the Neoproterozoic Doushantuo Formation, Southwest China , 2006 .

[69]  E. Davidson,et al.  Phosphatized Polar Lobe-Forming Embryos from the Precambrian of Southwest China , 2006, Science.

[70]  Isaac Salazar-Ciudad,et al.  Morphological evolution and embryonic developmental diversity in metazoa , 2010, Development.

[71]  R. Raff Polar lobe formation by embryos of Ilyanassa obsoleta. Effects of inhibitors of microtubule and microfilament function. , 1972, Experimental cell research.

[72]  S. Bengtson,et al.  Comment on "Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian" , 2004, Science.

[73]  G. Wray The evolution of embryonic patterning mechanisms in animals. , 2000, Seminars in cell & developmental biology.

[74]  Eric H Davidson,et al.  The last common bilaterian ancestor. , 2002, Development.

[75]  A. Ivantsov New reconstruction of Kimberella, problematic Vendian metazoan , 2009 .

[76]  Marco Stampanoni,et al.  Cellular and Subcellular Structure of Neoproterozoic Animal Embryos , 2006, Science.

[77]  Chen,et al.  Precambrian sponges with cellular structures , 1998, Science.

[78]  T. Morgan The formation of the antipolar lobe in Ilyanassa , 1933 .

[79]  Daniel J. Condon,et al.  Fossil steroids record the appearance of Demospongiae during the Cryogenian period , 2009, Nature.