Fuzzy min–max neural networks for categorical data: application to missing data imputation

[1]  Qinbao Song,et al.  Missing Data Imputation Techniques , 2007, Int. J. Bus. Intell. Data Min..

[2]  Witold Pedrycz,et al.  A Novel Framework for Imputation of Missing Values in Databases , 2007, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[3]  S. Mohamed,et al.  Missing data: A comparison of neural network and expectation maximization techniques , 2007, 0704.3474.

[4]  Gabriele B. Durrant Imputation Methods for Handling Item-Nonresponse in the Social Sciences: A Methodological Review , 2005 .

[5]  Tshilidzi Marwala,et al.  The use of genetic algorithms and neural networks to approximate missing data in database , 2005, IEEE 3rd International Conference on Computational Cybernetics, 2005. ICCC 2005..

[6]  Bogdan Gabrys,et al.  Learning hybrid neuro-fuzzy classifier models from data: to combine or not to combine? , 2004, Fuzzy Sets Syst..

[7]  Andrzej Bargiela,et al.  An inclusion/exclusion fuzzy hyperbox classifier , 2004, Int. J. Knowl. Based Intell. Eng. Syst..

[8]  Bogdan Gabrys,et al.  Neuro-fuzzy approach to processing inputs with missing values in pattern recognition problems , 2002, Int. J. Approx. Reason..

[9]  Roelof K. Brouwer,et al.  A feed-forward network for input that is both categorical and quantitative , 2002, Neural Networks.

[10]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data , 2002 .

[11]  Bogdan Gabrys,et al.  Agglomerative Learning Algorithms for General Fuzzy Min-Max Neural Network , 2002, J. VLSI Signal Process..

[12]  J. Schafer,et al.  Missing data: our view of the state of the art. , 2002, Psychological methods.

[13]  Ingunn Myrtveit,et al.  Analyzing Data Sets with Missing Data: An Empirical Evaluation of Imputation Methods and Likelihood-Based Methods , 2001, IEEE Trans. Software Eng..

[14]  Andrzej Bargiela,et al.  General fuzzy min-max neural network for clustering and classification , 2000, IEEE Trans. Neural Networks Learn. Syst..

[15]  Roberto Tagliaferri,et al.  Fuzzy neural networks for classification and detection of anomalies , 1998, IEEE Trans. Neural Networks.

[16]  Henri Prade,et al.  What are fuzzy rules and how to use them , 1996, Fuzzy Sets Syst..

[17]  Chang Chieh Hang,et al.  The min-max function differentiation and training of fuzzy neural networks , 1996, IEEE Trans. Neural Networks.

[18]  Dimitar Filev,et al.  Relational partitioning of fuzzy rules , 1996, Fuzzy Sets Syst..

[19]  Sankar K. Pal,et al.  Self-organizing neural network as a fuzzy classifier , 1994, IEEE Trans. Syst. Man Cybern..

[20]  Patrick K. Simpson,et al.  Fuzzy min-max neural networks - Part 2: Clustering , 1993, IEEE Trans. Fuzzy Syst..

[21]  Witold Pedrycz,et al.  Fuzzy neural networks with reference neurons as pattern classifiers , 1992, IEEE Trans. Neural Networks.

[22]  Patrick K. Simpson,et al.  Fuzzy min-max neural networks. I. Classification , 1992, IEEE Trans. Neural Networks.

[23]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[24]  Thomas J. Santner,et al.  A note on A. Albert and J. A. Anderson's conditions for the existence of maximum likelihood estimates in logistic regression models , 1986 .

[25]  R. Clarke,et al.  Theory and Applications of Correspondence Analysis , 1985 .

[26]  Ingram Olkin,et al.  Incomplete data in sample surveys , 1985 .

[27]  D. Rubin Formalizing Subjective Notions about the Effect of Nonrespondents in Sample Surveys , 1977 .

[28]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[29]  Ming Zhong,et al.  Evolutionary Regression and Neural Imputations of Missing Values , 2008, Soft Computing Applications in Industry.

[30]  Chee Peng Lim,et al.  A Modified Fuzzy Min-Max Neural Network and Its Application to Fault Classification , 2007 .

[31]  Prabir Kumar Biswas,et al.  A Fuzzy Min-Max Neural Network Classifier With Compensatory Neuron Architecture , 2007, IEEE Transactions on Neural Networks.

[32]  Jesús Cardeñosa,et al.  A FUZZY CONTROL APPROACH FOR VOTE ESTIMATION , 2007 .

[33]  D. Cox Principles of Statistical Inference , 2006 .

[34]  Pabitra Mitra,et al.  Data mining in soft computing framework: a survey , 2002, IEEE Trans. Neural Networks.

[35]  Kazuo Tanaka An introduction to fuzzy logic for practical applications , 1997 .

[36]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[37]  P. K. Simpson Fuzzy Min-Max Neural Networks-Part 1 : Classification , 1992 .