Bone morphogenetic protein receptors and signal transduction.

Bone morphogenetic proteins (BMPs) exhibit broad spectra of biological activities in various tissues, including bone, cartilage, blood vessels, heart, kidney, neurons, liver and lung. BMPs are members of the transforming growth factor-beta (TGF-beta) family that bind to type II and type I serine-threonine kinase receptors, and transduce signals through Smad and non-Smad signalling pathways. Recent findings have revealed that BMP signalling is finely tuned by various mechanisms in both positive and negative fashions. Perturbations of BMP signalling pathways are linked to a wide variety of clinical disorders, including vascular diseases, skeletal diseases and cancer. Administration of recombinant BMP ligands and increasing endogenous expression of BMPs provide therapeutic effects on some diseases. The recent development of BMP receptor inhibitors may also prove useful for some clinical diseases induced by hyperactivation of the BMP signalling pathways.

[1]  H. Aburatani,et al.  Promoter‐wide analysis of Smad4 binding sites in human epithelial cells , 2009, Cancer science.

[2]  P. Jones,et al.  Defective pulmonary vascular remodeling in Smad8 mutant mice. , 2009, Human molecular genetics.

[3]  R. Derynck,et al.  New regulatory mechanisms of TGF-beta receptor function. , 2009, Trends in cell biology.

[4]  Min Xie,et al.  TAK1 is an essential regulator of BMP signalling in cartilage , 2009, The EMBO journal.

[5]  Y. Henis,et al.  Novel crosstalk to BMP signalling: cGMP‐dependent kinase I modulates BMP receptor and Smad activity , 2009, The EMBO journal.

[6]  P. Knaus,et al.  PP2A regulates BMP signalling by interacting with BMP receptor complexes and by dephosphorylating both the C-terminus and the linker region of Smad1 , 2009, Journal of Cell Science.

[7]  S. Yuspa,et al.  TGF-β signalling is regulated by Schnurri-2 dependent nuclear translocation of CLIC4 and consequent stabilization of phospho Smad2–3 , 2009, Nature Cell Biology.

[8]  Xin-Hua Feng,et al.  Transforming Growth Factor β Can Stimulate Smad1 Phosphorylation Independently of Bone Morphogenic Protein Receptors* , 2009, Journal of Biological Chemistry.

[9]  K. Retting,et al.  BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation , 2009, Development.

[10]  K. Ogawa,et al.  Receptor expression modulates the specificity of transforming growth factor‐β signaling pathways , 2009, Genes to cells : devoted to molecular & cellular mechanisms.

[11]  R. Matsuoka,et al.  A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension , 2009, Journal of Medical Genetics.

[12]  R. Derynck,et al.  TGFβ‐stimulated Smad1/5 phosphorylation requires the ALK5 L45 loop and mediates the pro‐migratory TGFβ switch , 2009, The EMBO journal.

[13]  E. Beutler,et al.  Two BMP responsive elements, STAT, and bZIP/HNF4/COUP motifs of the hepcidin promoter are critical for BMP, SMAD1, and HJV responsiveness. , 2009, Blood.

[14]  Leonardo Morsut,et al.  FAM/USP9x, a Deubiquitinating Enzyme Essential for TGFβ Signaling, Controls Smad4 Monoubiquitination , 2009, Cell.

[15]  Zhenzhen Wang,et al.  Smad7 Is Required for the Development and Function of the Heart* , 2009, Journal of Biological Chemistry.

[16]  Y. Okazaki,et al.  A unique mutation of ALK2, G356D, found in a patient with fibrodysplasia ossificans progressiva is a moderately activated BMP type I receptor. , 2008, Biochemical and biophysical research communications.

[17]  Tomokazu Fukuda,et al.  BMP type I receptor inhibition reduces heterotopic ossification , 2008, Nature Medicine.

[18]  Y. Mishina,et al.  BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway , 2008, Development.

[19]  D. Stewart,et al.  Mice expressing BMPR2R899X transgene in smooth muscle develop pulmonary vascular lesions. , 2008, American journal of physiology. Lung cellular and molecular physiology.

[20]  H. Aburatani,et al.  Chromatin Immunoprecipitation on Microarray Analysis of Smad2/3 Binding Sites Reveals Roles of ETS1 and TFAP2A in Transforming Growth Factor β Signaling , 2008, Molecular and Cellular Biology.

[21]  K. Miyazono,et al.  An Id-like molecule, HHM, is a synexpression group-restricted regulator of TGF-β signalling , 2008, The EMBO journal.

[22]  G. R. van den Brink,et al.  Bone morphogenetic protein signalling in colorectal cancer , 2008, Nature Reviews Cancer.

[23]  H. Beppu,et al.  Genetic Ablation of the Bmpr2 Gene in Pulmonary Endothelium Is Sufficient to Predispose to Pulmonary Arterial Hypertension , 2008, Circulation.

[24]  R. Peterson,et al.  Dorsomorphin, a Selective Small Molecule Inhibitor of BMP Signaling, Promotes Cardiomyogenesis in Embryonic Stem Cells , 2008, PloS one.

[25]  J. Loscalzo,et al.  Inflammation, endothelial injury, and persistent pulmonary hypertension in heterozygous BMPR2-mutant mice. , 2008, American journal of physiology. Heart and circulatory physiology.

[26]  Randall T Peterson,et al.  Structure-activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors. , 2008, Bioorganic & medicinal chemistry letters.

[27]  H. Beppu,et al.  Stromal inactivation of BMPRII leads to colorectal epithelial overgrowth and polyp formation , 2008, Oncogene.

[28]  K. Miyazono,et al.  BMPs promote proliferation and migration of endothelial cells via stimulation of VEGF-A/VEGFR2 and angiopoietin-1/Tie2 signalling. , 2008, Journal of biochemistry.

[29]  H. Aburatani,et al.  Pitx2 Prevents Osteoblastic Transdifferentiation of Myoblasts by Bone Morphogenetic Proteins* , 2008, Journal of Biological Chemistry.

[30]  E. Robertis,et al.  Integrating Patterning Signals: Wnt/GSK3 Regulates the Duration of the BMP/Smad1 Signal , 2007, Cell.

[31]  Seong-Jin Kim,et al.  TrkC binds to the bone morphogenetic protein type II receptor to suppress bone morphogenetic protein signaling. , 2007, Cancer research.

[32]  Dong Liu,et al.  Dosage-dependent requirement of BMP type II receptor for maintenance of vascular integrity. , 2007, Blood.

[33]  K. Miyazono,et al.  Selective Inhibitory Effects of Smad6 on Bone Morphogenetic Protein Type I Receptors* , 2007, Journal of Biological Chemistry.

[34]  H. Beppu,et al.  Repulsive Guidance Molecule RGMa Alters Utilization of Bone Morphogenetic Protein (BMP) Type II Receptors by BMP2 and BMP4* , 2007, Journal of Biological Chemistry.

[35]  A. Hata,et al.  A Novel Regulatory Mechanism of the Bone Morphogenetic Protein (BMP) Signaling Pathway Involving the Carboxyl-Terminal Tail Domain of BMP Type II Receptor , 2007, Molecular and Cellular Biology.

[36]  A. Gressner,et al.  Endoglin Differentially Modulates Antagonistic Transforming Growth Factor-β1 and BMP-7 Signaling* , 2007, Journal of Biological Chemistry.

[37]  Feng Chen,et al.  Smad7 Antagonizes Transforming Growth Factor β Signaling in the Nucleus by Interfering with Functional Smad-DNA Complex Formation , 2007, Molecular and Cellular Biology.

[38]  Xu Cao,et al.  Endofin acts as a Smad anchor for receptor activation in BMP signaling , 2007, Journal of Cell Science.

[39]  M. V. Dinther,et al.  BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis , 2007, Journal of Cell Science.

[40]  L. David,et al.  Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. , 2007, Blood.

[41]  A. Brivanlou,et al.  Balancing BMP signaling through integrated inputs into the Smad1 linker. , 2007, Molecular cell.

[42]  E. Bikoff,et al.  Dose-dependent Smad1, Smad5 and Smad8 signaling in the early mouse embryo. , 2006, Developmental biology.

[43]  Wei He,et al.  Hematopoiesis Controlled by Distinct TIF1γ and Smad4 Branches of the TGFβ Pathway , 2006, Cell.

[44]  M. Glimcher,et al.  Regulation of Adult Bone Mass by the Zinc Finger Adapter Protein Schnurri-3 , 2006, Science.

[45]  S. Choe,et al.  Structure of the ternary signaling complex of a TGF-β superfamily member , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Raymond T Chung,et al.  Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression , 2006, Nature Genetics.

[47]  S. Ishii,et al.  Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. , 2006, Developmental cell.

[48]  S. Akira,et al.  Essential function for the kinase TAK1 in innate and adaptive immune responses , 2005, Nature Immunology.

[49]  Stefan Mundlos,et al.  Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2. , 2005, The Journal of clinical investigation.

[50]  C. Woolf,et al.  Repulsive Guidance Molecule (RGMa), a DRAGON Homologue, Is a Bone Morphogenetic Protein Co-receptor* , 2005, Journal of Biological Chemistry.

[51]  Mallika Singh,et al.  Crystal Structure of BMP-9 and Functional Interactions with Pro-region and Receptors* , 2005, Journal of Biological Chemistry.

[52]  H. Beppu,et al.  Bone Morphogenetic Protein (BMP) Type II Receptor Deletion Reveals BMP Ligand-specific Gain of Signaling in Pulmonary Artery Smooth Muscle Cells* , 2005, Journal of Biological Chemistry.

[53]  R. Derynck,et al.  Repression of Bone Morphogenetic Protein and Activin-inducible Transcription by Evi-1* , 2005, Journal of Biological Chemistry.

[54]  Joseph J. Mills,et al.  Smad1 and Smad8 Function Similarly in Mammalian Central Nervous System Development , 2005, Molecular and Cellular Biology.

[55]  K. Miyazono,et al.  BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. , 2005, Cytokine & growth factor reviews.

[56]  A. Brivanlou,et al.  DRAGON, a Bone Morphogenetic Protein Co-receptor* , 2005, Journal of Biological Chemistry.

[57]  S. Mundlos,et al.  A homozygous BMPR1B mutation causes a new subtype of acromesomelic chondrodysplasia with genital anomalies , 2005, Journal of Medical Genetics.

[58]  J. Wrana,et al.  Activation of LIMK1 by binding to the BMP receptor, BMPRII, regulates BMP‐dependent dendritogenesis , 2004, The EMBO journal.

[59]  Stefan Mundlos,et al.  Modulation of GDF5/BRI‐b signalling through interaction with the tyrosine kinase receptor Ror2 , 2004, Genes to cells : devoted to molecular & cellular mechanisms.

[60]  R. Hollingsworth,et al.  CD44 modulates Smad1 activation in the BMP-7 signaling pathway , 2004, The Journal of cell biology.

[61]  T. Akiyama,et al.  Transcriptional regulation of the TGF-β pseudoreceptor BAMBI by TGF-β signaling , 2004 .

[62]  C. Mummery,et al.  Identification of Novel Regulators Associated With Early‐Phase Osteoblast Differentiation , 2004, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[63]  C. Niehrs,et al.  Transcriptional regulation of BMP4 synexpression in transgenic Xenopus , 2004, The EMBO journal.

[64]  K. Miyazono,et al.  Endogenous TGF‐β signaling suppresses maturation of osteoblastic mesenchymal cells , 2004, The EMBO journal.

[65]  K. Miyazono,et al.  Interaction with Smad4 is indispensable for suppression of BMP signaling by c-Ski. , 2003, Molecular biology of the cell.

[66]  Ying E. Zhang,et al.  Smad-dependent and Smad-independent pathways in TGF-β family signalling , 2003, Nature.

[67]  Jonas Larsson,et al.  Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. , 2003, Molecular cell.

[68]  S. Mundlos,et al.  Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  E. Stanley,et al.  Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1 , 2003, The Journal of cell biology.

[70]  J. Szatkowski,et al.  Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs) 1 1 J Bone Joint Surg Am 2003;85A:1544–52 , 2003 .

[71]  W. Kwiatkowski,et al.  The BMP7/ActRII extracellular domain complex provides new insights into the cooperative nature of receptor assembly. , 2003, Molecular cell.

[72]  K. Miyazono,et al.  RUNX transcription factors as key targets of TGF-β superfamily signaling , 2003 .

[73]  Hiroyuki Aburatani,et al.  Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor‐β in human umbilical vein endothelial cells , 2002, Journal of cellular physiology.

[74]  K. Miyazono,et al.  Id: A Target of BMP Signaling , 2002, Science's STKE.

[75]  B. Qin,et al.  Smad3 allostery links TGF-beta receptor kinase activation to transcriptional control. , 2002, Genes & development.

[76]  P. ten Dijke,et al.  Identification and Functional Characterization of Distinct Critically Important Bone Morphogenetic Protein-specific Response Elements in the Id1 Promoter* , 2002, The Journal of Biological Chemistry.

[77]  C. Deng,et al.  Targeted mutagenesis of Smad1 reveals an essential role in chorioallantoic fusion. , 2001, Developmental biology.

[78]  E. Robertson,et al.  Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. , 2001, Development.

[79]  C. Heldin,et al.  Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads , 2001, The EMBO journal.

[80]  Victor E. Velculescu,et al.  Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis , 2001, Nature Genetics.

[81]  R. Dildrop,et al.  Bambi is coexpressed with Bmp-4 during mouse embryogenesis , 2001, Mechanisms of Development.

[82]  Sakae Tanaka,et al.  Negative Regulation of BMP/Smad Signaling by Tob in Osteoblasts , 2000, Cell.

[83]  R. Harland,et al.  Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Dean Y. Li,et al.  Arteriovenous malformations in mice lacking activin receptor-like kinase-1 , 2000, Nature Genetics.

[85]  K. Miyazono,et al.  A RUNX2/PEBP2alpha A/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[86]  S. Hodge,et al.  Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. , 2000, American journal of human genetics.

[87]  R. Trembath,et al.  Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension , 2000, Nature Genetics.

[88]  T. Kirsch,et al.  BMP‐2 antagonists emerge from alterations in the low‐affinity binding epitope for receptor BMPR‐II , 2000, The EMBO journal.

[89]  T. Kirsch,et al.  Crystal structure of the BMP-2–BRIA ectodomain complex , 2000, Nature Structural Biology.

[90]  K. Miyazono,et al.  BMP type II receptor is required for gastrulation and early development of mouse embryos. , 2000, Developmental biology.

[91]  P. Donahoe,et al.  Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[92]  K. Miyazono,et al.  Smad6 Is a Smad1/5-induced Smad Inhibitor , 2000, The Journal of Biological Chemistry.

[93]  K. Lyons,et al.  The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. , 2000, Development.

[94]  M. Gimbrone,et al.  A role for Smad6 in development and homeostasis of the cardiovascular system , 2000, Nature Genetics.

[95]  J. Massagué,et al.  Structural basis of Smad2 recognition by the Smad anchor for receptor activation. , 2000, Science.

[96]  D. Dumont,et al.  A murine model of hereditary hemorrhagic telangiectasia. , 1999, The Journal of clinical investigation.

[97]  C. Niehrs,et al.  Silencing of TGF-β signalling by the pseudoreceptor BAMBI , 1999, Nature.

[98]  P. Donahoe,et al.  The type I serine/threonine kinase receptor ActRIA (ALK2) is required for gastrulation of the mouse embryo. , 1999, Development.

[99]  B. Brooke,et al.  Defective angiogenesis in mice lacking endoglin. , 1999, Science.

[100]  M. Matzuk,et al.  Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. , 1999, Development.

[101]  C. Deng,et al.  Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5. , 1999, Development.

[102]  J. Massagué,et al.  Smad1 Recognition and Activation by the ALK1 Group of Transforming Growth Factor-β Family Receptors* , 1999, The Journal of Biological Chemistry.

[103]  Morgan Huse,et al.  Crystal Structure of the Cytoplasmic Domain of the Type I TGF β Receptor in Complex with FKBP12 , 1999, Cell.

[104]  J. Wrana,et al.  Endoglin Is an Accessory Protein That Interacts with the Signaling Receptor Complex of Multiple Members of the Transforming Growth Factor-β Superfamily* , 1999, The Journal of Biological Chemistry.

[105]  Yigong Shi,et al.  Crystal Structure of a Smad MH1 Domain Bound to DNA Insights on DNA Binding in TGF-β Signaling , 1998, Cell.

[106]  Takeshi Imamura,et al.  Smad proteins exist as monomers in vivo and undergo homo‐ and hetero‐oligomerization upon activation by serine/threonine kinase receptors , 1998, The EMBO journal.

[107]  L. Aaltonen,et al.  Mutations in the SMAD4/DPC4 gene in juvenile polyposis. , 1998, Science.

[108]  K. Miyazono,et al.  Signal transduction by bone morphogenetic proteins. , 1998, Cytokine & growth factor reviews.

[109]  K. Irie,et al.  Role of TAK1 and TAB1 in BMP signaling in early Xenopus development , 1998, The EMBO journal.

[110]  Kohei Miyazono,et al.  TGF-β signalling from cell membrane to nucleus through SMAD proteins , 1997, Nature.

[111]  S. P. Oh,et al.  The signaling pathway mediated by the type IIB activin receptor controls axial patterning and lateral asymmetry in the mouse. , 1997, Genes & development.

[112]  Yigong Shi,et al.  A structural basis for mutational inactivation of the tumour suppressor Smad4 , 1997, Nature.

[113]  K. Miyazono,et al.  Identification of Type I and Type II Serine/Threonine Kinase Receptors for Growth/Differentiation Factor-5* , 1996, The Journal of Biological Chemistry.

[114]  D. W. Johnson,et al.  Mutations in the activin receptor–like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2 , 1996, Nature Genetics.

[115]  Scott E. Kern,et al.  DPC4, A Candidate Tumor Suppressor Gene at Human Chromosome 18q21.1 , 1996, Science.

[116]  K. Irie,et al.  Identification of a Member of the MAPKKK Family as a Potential Mediator of TGF-β Signal Transduction , 1995, Science.

[117]  R. Behringer,et al.  Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. , 1995, Genes & development.

[118]  K. Miyazono,et al.  Cloning and characterization of a human type II receptor for bone morphogenetic proteins. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[119]  A. Bradley,et al.  Different phenotypes for mice deficient in either activins or activin receptor type II , 1995, Nature.

[120]  D. Riddle,et al.  Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4. , 1994, The Journal of biological chemistry.

[121]  Charles C Hong,et al.  Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. , 2008, Nature chemical biology.

[122]  B. Hartmann,et al.  17 TGF-β Family Signaling in Drosophila , 2008 .

[123]  M. Furutani,et al.  Implications of mutations of activin receptor-like kinase 1 gene (ALK1) in addition to bone morphogenetic protein receptor II gene (BMPR2) in children with pulmonary arterial hypertension. , 2008, Circulation journal : official journal of the Japanese Circulation Society.

[124]  K. Miyazono,et al.  5 The Bone Morphogenetic Proteins , 2008 .

[125]  R. Derynck,et al.  2 TGF-β and the TGF-β Family , 2008 .

[126]  R. Derynck,et al.  The TGF-β Family , 2008 .

[127]  In Ho Choi,et al.  A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva , 2006, Nature Genetics.

[128]  K. Miyazono,et al.  Smad Transcriptional Co-Activators and Co-Repressors , 2006 .

[129]  C. Heldin,et al.  Smad Signal Transduction , 2006 .

[130]  M. O’Connor,et al.  The TGF beta activated kinase TAK1 regulates vascular development in vivo. , 2006, Development.

[131]  S. Choe,et al.  Three-finger toxin fold for the extracellular ligand-binding domain of the type II activin receptor serine kinase. , 1999, Nature Structural Biology.

[132]  J. Rossant,et al.  The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. , 1998, Genes & development.

[133]  D. W. Johnson,et al.  Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1 , 1994, Nature Genetics.

[134]  R. Randall,et al.  Transforming Growth Factor (cid:2) -Induced Smad1/5 Phosphorylation in Epithelial Cells Is Mediated by Novel Receptor Complexes and Is Essential for Anchorage-Independent Growth (cid:1) † , 2008 .