Understanding the function of bonding courses in masonry construction: An investigation with mixed numerical methods

[1]  S. Adriaenssens,et al.  Assessing the stability of unreinforced masonry arches and vaults: a comparison of analytical and numerical strategies , 2019 .

[2]  B. Glisic,et al.  The Foundation Walls of the Baptistery Di San Giovanni: A Combination of Laser Scanning and Finite-Distinct Element Modeling to Ascertain Damage Origins , 2019, International Journal of Architectural Heritage.

[3]  B. Glisic,et al.  Methodology for diagnosing crack patterns in masonry structures using photogrammetry and distinct element modeling , 2019, Engineering Structures.

[4]  B. Glisic,et al.  Integrating Non-Destructive Testing, Laser Scanning, and Numerical Modeling for Damage Assessment: The Room of the Elements , 2019, Heritage.

[5]  B. Glisic,et al.  Numerical Modeling of Crack Propagation in Masonry Structures , 2019, RILEM Bookseries.

[6]  P. Lourenço,et al.  Comparison of in-plane and out-of-plane failure modes of masonry arch bridges using discontinuum analysis , 2019, Engineering Structures.

[7]  Branko Glisic,et al.  Understanding the Function of Roman Bonding Courses: A Numerical Approach , 2019 .

[8]  B. Cornblatt,et al.  The schizophrenia prodrome: promise for prevention , 2001, Dialogues in clinical neuroscience.

[9]  Antonio Gesualdo,et al.  Rigid block models for masonry structures , 2018 .

[10]  M. Angelillo,et al.  Crack patterns identification in masonry structures with a C° displacement energy method , 2018 .

[11]  D. Baraldi,et al.  In plane loaded masonry walls: DEM and FEM/DEM models. A critical review , 2018 .

[12]  Gabriele Milani,et al.  FE Model Predicting the Load Carrying Capacity of Progressive FRP Strengthening of Masonry Arches Subjected to Settlement Damage , 2017 .

[13]  Rebecca Napolitano,et al.  Validating the Use of Graphical Thrust Line Analysis for Pier Buttresses: The Case Study of Amiens Cathedral , 2017 .

[14]  Gabriele Milani,et al.  Augustus Bridge in Narni (Italy): Seismic Vulnerability Assessment of the Still Standing Part, Possible Causes of Collapse, and Importance of the Roman Concrete Infill in the Seismic-Resistant Behavior , 2017 .

[15]  Gabriele Milani,et al.  DEM numerical approach for masonry aqueducts in seismic zone: two valuable Portuguese examples , 2017 .

[16]  G. Milani,et al.  FE model predicting the increase in seismic resistance induced by the progressive FRP strengthening on already damaged masonry arches subjected to settlement , 2017 .

[17]  Paulo B. Lourenço,et al.  Discrete element modeling of masonry structures: Validationand application , 2016 .

[18]  Giorgia Giardina,et al.  Sensitivity study on tunnelling induced damage to a masonry façade , 2015 .

[19]  Y. Sheng,et al.  Influence of brick–mortar interface on the mechanical behaviour of low bond strength masonry brickwork lintels , 2015 .

[20]  Gabriele Milani,et al.  Crack Patterns Induced by Foundation Settlements: Integrated Analysis on a Renaissance Masonry Palace in Italy , 2015 .

[21]  Yong Sheng,et al.  Evaluation of different computational modelling strategies for the analysis of low strength masonry structures , 2014 .

[22]  Željana Nikolić,et al.  A combined finite-discrete element analysis of dry stone masonry structures , 2013 .

[23]  A. Cazzani,et al.  Comparative analysis of numerical discrete and finite element models: the case of in-plane loaded periodic brickwork , 2013 .

[24]  Emanuele Reccia,et al.  FEM-DEM Modeling for Out-of-plane Loaded Masonry Panels: A Limit Analysis Approach , 2012 .

[25]  Debra F. Laefer,et al.  Manufacturing, assembly, and testing of scaled, historic masonry for one-gravity, pseudo-static, soil-structure experiments , 2011 .

[26]  Jay Hyams,et al.  Constructing the Ancient World: Architectural Techniques of the Greeks and Romans , 2010 .

[27]  A. Ingraffea,et al.  The toughness of imperial roman concrete , 2010 .

[28]  John Peter Oleson,et al.  A COMPARISON OF THE CHEMICAL AND ENGINEERING CHARACTERISTICS OF ANCIENT ROMAN HYDRAULIC CONCRETE WITH A MODERN REPRODUCTION OF VITRUVIAN HYDRAULIC CONCRETE , 2008 .

[29]  José V. Lemos,et al.  Discrete Element Modeling of Masonry Structures , 2007 .

[30]  Antonio Tralli,et al.  Heterogeneous upper-bound finite element limit analysis of masonry walls out-of-plane loaded , 2007 .

[31]  N. Monteiro Azevedo,et al.  Hybrid discrete element/finite element method for fracture analysis , 2006 .

[32]  José V. Lemos,et al.  Numerical study of the seismic behaviour of a part of the Parthenon Pronaos , 2003 .

[33]  I. Psycharis,et al.  COLLAPSE MECHANISMS OF MASONRY BUILDINGS DERIVED BY THE DISTINCT ELEMENT METHOD , 2002 .

[34]  Hai-Sui Yu,et al.  Lower bound limit analysis of unreinforced masonry shear walls , 2001, Numerical Models in Geomechanics.

[35]  Charles E. Augarde,et al.  Modelling tunnelling-induced settlement of masonry buildings , 2000 .

[36]  P. Lourenço,et al.  Multisurface Interface Model for Analysis of Masonry Structures , 1997 .

[37]  Alessandra Ricci,et al.  Investigating the hinterland of Constantinople: interim report on the Anastasian Long Wall , 1997, Journal of Roman Archaeology.

[38]  D. Owen,et al.  A combined finite‐discrete element method in transient dynamics of fracturing solids , 1995 .

[39]  Jean-Pierre Adam,et al.  Roman Building: Materials and Techniques , 1994 .

[40]  John Fitchen Building Construction Before Mechanization , 1986 .

[41]  J. B. Ward-Perkins,et al.  Roman Imperial Architecture , 1981 .

[42]  J. H. Williams Roman Building-Materials in South-East England , 1971, Britannia.