Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: A First Detection of Atmospheric Circular Polarization at Q band

The Earth’s magnetic field induces Zeeman splitting of the magnetic dipole transitions of molecular oxygen in the atmosphere, which produces polarized emission in the millimeter-wave regime. This polarized emission is primarily circularly polarized and manifests as a foreground with a dipole-shaped sky pattern for polarization-sensitive ground-based cosmic microwave background experiments, such as the Cosmology Large Angular Scale Surveyor (CLASS), which is capable of measuring large angular scale circular polarization. Using atmospheric emission theory and radiative transfer formalisms, we model the expected amplitude and spatial distribution of this signal and evaluate the model for the CLASS observing site in the Atacama Desert of northern Chile. Then, using two years of observations at 32.°3 to 43.7 GHz from the CLASS Q-band telescope, we present a detection of this signal and compare the observed signal to that predicted by the model. We recover an angle between magnetic north and true north of −5.°5 ± 0.°6, which is consistent with the expectation of −5.°9 for the CLASS observing site. When comparing dipole sky patterns fit to both simulated and data-derived sky maps, the dipole directions match to within a degree, and the measured amplitudes match to within ∼20%.

[1]  Leo Singer,et al.  healpy: equal area pixelization and spherical harmonics transforms for data on the sphere in Python , 2019, J. Open Source Softw..

[2]  P. Eriksson,et al.  Updated Zeeman effect splitting coefficients for molecular oxygen in planetary applications , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[3]  Johannes Hubmayr,et al.  On-sky Performance of the CLASS Q-band Telescope , 2018, The Astrophysical Journal.

[4]  M. Kamionkowski,et al.  Circular polarization of the cosmic microwave background from vector and tensor perturbations , 2018, Physical Review D.

[5]  Adrian T. Lee,et al.  Measurements of Tropospheric Ice Clouds with a Ground-based CMB Polarization Experiment, POLARBEAR , 2018, The Astrophysical Journal.

[6]  Aamir Ali,et al.  Variable-delay polarization modulators for the CLASS telescopes , 2018, Astronomical Telescopes + Instrumentation.

[7]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[8]  Edward J. Wollack,et al.  A Projected Estimate of the Reionization Optical Depth Using the CLASS Experiment’s Sample Variance Limited E-mode Measurement , 2018, The Astrophysical Journal.

[9]  Lyman A. Page,et al.  Results from the Atacama B-mode Search (ABS) experiment , 2018, Journal of Cosmology and Astroparticle Physics.

[10]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[11]  James Randa,et al.  Recommended Terminology for Microwave Radiometry , 2017 .

[12]  P. A. R. Ade,et al.  A New Limit on CMB Circular Polarization from SPIDER , 2017, 1704.00215.

[13]  M. Tretyakov,et al.  Spectroscopy underlying microwave remote sensing of atmospheric water vapor , 2016 .

[14]  S. Tizchang,et al.  Cosmic microwave background polarization in non-commutative space-time , 2016 .

[15]  Aamir Ali,et al.  The Cosmology Large Angular Scale Surveyor , 2016, Astronomical Telescopes + Instrumentation.

[16]  P. Lubin,et al.  Circular polarization of the CMB: Foregrounds and detection prospects , 2016, 1606.04112.

[17]  Collisional broadening of oxygen fine structure lines: The impact of temperature , 2016 .

[18]  Edward J. Wollack,et al.  MEASURING THE LARGEST ANGULAR SCALE CMB B-MODE POLARIZATION WITH GALACTIC FOREGROUNDS ON A CUT SKY , 2015, 1508.00017.

[19]  Pressure broadening of oxygen fine structure lines by water , 2015 .

[20]  R. Sawyer Photon-photon interactions as a source of cosmic microwave background circular polarization , 2015 .

[21]  Michele Limon,et al.  CLASS: the cosmology large angular scale surveyor , 2014, Astronomical Telescopes and Instrumentation.

[22]  R. Mohammadi Evidence for cosmic neutrino background from CMB circular polarization , 2013, 1312.2199.

[23]  P. Eriksson,et al.  A treatment of the Zeeman effect using Stokes formalism and its implementation in the Atmospheric Radiative Transfer Simulator (ARTS) , 2014 .

[24]  F. Cavaliere,et al.  An improved upper limit to the CMB circular polarization at large angular scales , 2013, 1307.6090.

[25]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[26]  Edward J. Wollack,et al.  The cosmology large angular scale surveyor (CLASS): 40 GHz optical design , 2012, Other Conferences.

[27]  Edward J. Wollack,et al.  Properties of a variable-delay polarization modulator. , 2011, Applied optics.

[28]  D. S. Makarov,et al.  60-GHz oxygen band: Precise experimental profiles and extended absorption modeling in a wide temperature range , 2011 .

[29]  Giulio Fabbian,et al.  A template of atmospheric O2 circularly polarized emission for cosmic microwave background experiments , 2011 .

[30]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[31]  M. Haghighat,et al.  Generation of circular polarization of the CMB , 2009, 0912.2993.

[32]  D. J. Fixsen,et al.  THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.

[33]  V-mode polarization of the cosmic microwave background , 2009, 0909.3629.

[34]  Ye Hong,et al.  Design and Evaluation of the First Special Sensor Microwave Imager/Sounder , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[35]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[36]  Bradley R. Johnson,et al.  Systematic errors in cosmic microwave background polarization measurements , 2006, astro-ph/0610361.

[37]  T. R. Sreerekha,et al.  Observing CMB polarisation through ice , 2006, astro-ph/0611678.

[38]  Michael J. Schwartz,et al.  EOS MLS forward model polarized radiative transfer for Zeeman-split oxygen lines , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[40]  Chikako Takahashi,et al.  Intercomparison of general purpose clear sky atmospheric radiative transfer models for the millimeter/submillimeter spectral range , 2005 .

[41]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[42]  Cambridge,et al.  Polarization of the atmosphere as a foreground for cosmic microwave background polarization experiments , 2003, astro-ph/0307052.

[43]  A. Melchiorri,et al.  Is the cosmic microwave background circularly polarized , 2002, astro-ph/0205214.

[44]  P. Rosenkranz Water vapor microwave continuum absorption: A comparison of measurements and models , 1998 .

[45]  J. Steinberger,et al.  Large Angular Scale Polarization of the Cosmic Microwave Background Radiation and the Feasibility of Its Detection , 1997, astro-ph/9710087.

[46]  W. White A CMB polarization primer , 1997, astro-ph/9706147.

[47]  C. Prigent,et al.  Evidence of the zeeman splitting in the 21 → 01 rotational transition of the atmospheric 16O18O molecule from ground-based measurements , 1995 .

[48]  M. Janssen Atmospheric Remote Sensing by Microwave Radiometry , 1993 .

[49]  Philip W. Rosenkranz,et al.  Atmospheric 60-GHz oxygen spectrum : new laboratory measurements and line parameters , 1992 .

[50]  Field,et al.  Limits on a Lorentz- and parity-violating modification of electrodynamics. , 1990, Physical review. D, Particles and fields.

[51]  F. X. Kneizys,et al.  Line shape and the water vapor continuum , 1989 .

[52]  Hans J. Liebe,et al.  MPM—An atmospheric millimeter-wave propagation model , 1989 .

[53]  D. H. Staelin,et al.  Polarized thermal microwave emission from oxygen in the mesosphere , 1988 .

[54]  R. B. Partridge,et al.  Linear polarized fluctuations in the cosmic microwave background , 1988, Nature.

[55]  R. J. Hill,et al.  Water vapor‐absorption line shape comparison using the 22‐GHz line: The Van Vleck‐Weisskopf shape affirmed , 1986 .

[56]  P L Varghese,et al.  Collisional narrowing effects on spectral line shapes measured at high resolution. , 1984, Applied optics.

[57]  G. Smoot,et al.  Linear and circular polarization of the cosmic background radiation , 1983 .

[58]  E. Lifshitz,et al.  ASYMPTOTIC FORMULAE OF QUANTUM ELECTRODYNAMICS , 1982 .

[59]  Hans J. Liebe,et al.  Modeling attenuation and phase of radio waves in air at frequencies below 1000 GHz , 1981 .

[60]  Floyd Herbert,et al.  Spectrum line profiles: A generalized Voigt function including collisional narrowing , 1974 .

[61]  L. Machta,et al.  Atmospheric Oxygen in 1967 to 1970 , 1970, Science.

[62]  William B. Lenoir,et al.  Microwave spectrum of molecular oxygen in the mesosphere. , 1968 .

[63]  William B. Lenoir,et al.  Propagation of Partially Polarized Waves in a Slightly Anisotropic Medium , 1967 .

[64]  B. Armstrong Spectrum line profiles: The Voigt function , 1967 .

[65]  M. L. Meeks,et al.  The microwave spectrum of oxygen in the Earth's atmosphere , 1963 .

[66]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[67]  R. Penndorf The vertical distribution of atomic oxygen in the upper atmosphere , 1949 .

[68]  J. V. Vleck,et al.  On the Shape of Collision-Broadened Lines , 1945 .