Enhanced heat confinement in the flexible heliac TJ-II

Recent experimental results show that the core electron temperature in the TJ-II stellarator almost doubles previously obtained values for the same heating power. These plasmas, heated with electron cyclotron waves, are characterized by their low density, and by having highly peaked electron temperature profiles and flat, or even hollow, density profiles. The conditions for obtaining these high electron temperature discharges regarding their density, injected power and dependence on plasma species are described. Neoclassical and experimental transport analyses are performed for these discharges, showing a reduction in the electron heat conductivity at the plasma core. The relations of this observed confinement enhancement to the CHS internal transport barrier and the W7-AS neoclassical electron root feature are discussed.

[1]  T. Luce,et al.  INTERNAL TRANSPORT BARRIERS IN JET DEUTERIUM-TRITIUM PLASMAS , 1998 .

[2]  V. Tribaldos Monte Carlo estimation of neoclassical transport for the TJ-II stellarator , 2001 .

[3]  H. Sanuki,et al.  Discovery of Electric Pulsation in a Toroidal Helical Plasma , 1998 .

[4]  H. Sanuki,et al.  ELECTRON THERMAL TRANSPORT BARRIER AND DENSITY FLUCTUATION REDUCTION IN A TOROIDAL HELICAL PLASMA , 1999 .

[5]  A. Fernández,et al.  Confinement studies in the TJ-II stellarator , 1999 .

[6]  Herranz,et al.  Profile structures of TJ-II stellarator plasmas , 2000, Physical review letters.

[7]  Daniel E. Hastings,et al.  The ambipolar electric field in stellarators , 1985 .

[8]  O. Sauter,et al.  Long-pulse improved central electron confinement in the TCV tokamak with electron cyclotron heating and current drive. , 2001, Physical review letters.

[9]  Lao,et al.  Enhanced confinement and stability in DIII-D discharges with reversed magnetic shear. , 1995, Physical review letters.

[10]  Basiuk,et al.  Internal transport barrier with ion-cyclotron-resonance minority heating on tore supra , 2000, Physical review letters.

[11]  V. Erckmann,et al.  Kinetic modelling of the ECRH power deposition in W7-AS , 1997 .

[12]  E. Giovannozzi,et al.  High Core Electron Confinement Regimes in FTU Plasmas with Low- or Reversed-Magnetic Shear and High Power Density Electron-Cyclotron-Resonance Heating , 1999 .

[13]  R. Budny,et al.  ACHIEVEMENT OF HIGH FUSION PERFORMANCE IN JT-60U REVERSED SHEAR DISCHARGES , 1997 .

[14]  C. D. Beidler,et al.  The neoclassical “Electron Root” feature in the Wendelstein-7-AS stellarator , 2000 .

[15]  R. J. Groebner,et al.  An emerging understanding of H-mode discharges in tokamaks , 1993 .

[16]  V. Erckmann,et al.  H-mode of W7-AS stellarator , 1994 .

[17]  C. J. Barth,et al.  High-resolution multiposition Thomson scattering for the TJ-II stellarator , 1999 .

[18]  N. Nakajima,et al.  5-D simulation study of suprathermal electron transport in non-axisymmetric plasmas , 1998 .

[19]  Georg Kühner,et al.  Experimental and neoclassical electron heat transport in the LMFP regime for the stellarators W7‐A, L‐2, and W7‐AS , 1993 .

[20]  ASDEX-Upgrade team,et al.  The H-Mode of ASDEX , 1989 .

[21]  M. Ono,et al.  Active core profile and transport modification by application of ion Bernstein wave power in the Princeton Beta Experiment-Modification , 1995 .

[22]  E. D. Fredrickson,et al.  Improved confinement with reversed magnetic shear in TFTR. , 1995 .

[23]  Paul W. Terry,et al.  Influence of sheared poloidal rotation on edge turbulence , 1990 .