A variational characterization of 2-soliton profiles for the KdV equation

It is well known that 2-soliton profiles for the KdV equation are local minimizers of a constrained variational problem involving three polynomial conservation laws. Here we show that 2-soliton profiles are the global minimizers for this variational problem. The proof, which proceeds via a profile decomposition, also shows that every minimizing sequence converges strongly to the set of minimizing profiles.

[1]  Monica Visan,et al.  Orbital Stability of KdV Multisolitons in H-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{-1}$$\end{document} , 2020, Communications in Mathematical Physics.

[2]  S. Le Coz,et al.  Stability of the multi-solitons of the modified Korteweg–de Vries equation , 2020, Nonlinearity.

[3]  Nghiem V. Nguyen,et al.  A uniqueness result for 2-soliton solutions of the KdV equation , 2017, 1710.09005.

[4]  G. Fibich Stability of Solitary Waves , 2015 .

[5]  Peter D. Lax,et al.  Periodic solutions of the KdV equation , 2010 .

[6]  J. Benameur Description du défaut de compacité de l'injection de Sobolev sur le groupe de Heisenberg , 2008 .

[7]  J. Albert Concentration Compactness and the Stability of Solitary-Wave Solutions to Nonlocal Equations , 1996 .

[8]  S. Solimini A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev Space , 1995 .

[9]  J. Maddocks,et al.  On the stability of KdV multi‐solitons , 1993 .

[10]  Jean-Michel Coron,et al.  Convergence of solutions of H-systems or how to blow bubbles , 1985 .

[11]  Michael Struwe,et al.  A global compactness result for elliptic boundary value problems involving limiting nonlinearities , 1984 .

[12]  P. Lions,et al.  Orbital stability of standing waves for some nonlinear Schrödinger equations , 1982 .

[13]  村田 安雄,et al.  Mathematics for stability and optimization of economic systems , 1977 .

[14]  Peter D. Lax,et al.  Almost Periodic Solutions of the KdV Equation , 1976 .

[15]  J. Bona On the stability theory of solitary waves , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  Sergei Petrovich Novikov,et al.  The periodic problem for the Korteweg—de vries equation , 1974 .

[17]  F. W. Warner Foundations of Differentiable Manifolds and Lie Groups , 1971 .

[18]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[19]  D. Luenberger Optimization by Vector Space Methods , 1968 .