Finite generation of extensions of associated graded rings along a valuation

In this paper we consider the question of when the associated graded ring along a valuation, ${\rm gr}_{\nu^*}(S)$, is a finite ${\rm gr}_{\nu^*}(R)$-module, where $S$ is a normal local ring which lies over a normal local ring $R$ and $\nu^*$ is a valuation of the quotient field of $S$ which dominates $S$. We obtain a very general result in equicharacteristic zero in Theorem 1.5. We also obtain general results for unramified extensions of excellent local rings in Proposition 1.7.

[1]  H. Hironaka THREE KEY THEOREMS ON INFINITELY NEAR SINGULARITIES , 2005 .

[2]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[3]  S. Cutkosky Finite generation of extensions of associated graded rings along a valuation , 2017, J. Lond. Math. Soc..

[4]  O. Villamayor,et al.  Singularities in positive characteristic, stratification and simplification of the singular locus , 2008, 0807.4308.

[5]  Willett,et al.  Every place admits local uniformization in a finite extension of the function field , 2007, math/0702856.

[6]  S. Cutkosky A generalisation of the Abhyankar Jung theorem to associated graded rings of valuations , 2014, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  S. Abhyankar Ramification theoretic methods in algebraic geometry , 1959 .

[8]  S. Abhyankar Resolution Of Singularities Of Embedded Algebraic Surfaces , 1966 .

[9]  Masayoshi Nagata,et al.  Local Rings , 2022 .

[10]  M. Vaquié Famille admissible de valuations et défaut d'une extension , 2007 .

[11]  S. Abhyankar Local uniformization on algebraic surfaces over ground fields of characteristic p ≠ 0 1 , 1956 .

[12]  M. Spivakovsky,et al.  VALUATIONS IN FUNCTION FIELDS OF SURFACES , 1990 .

[13]  F. Kuhlmann Correction and notes to the paper “A classification of Artin–Schreier defect extensions and characterizations of defectless fields” , 2010, Illinois Journal of Mathematics.

[14]  Franz-Viktor Kuhlmann,et al.  Value groups, residue fields, and bad places of rational function fields , 2004, 1003.5685.

[15]  Vincent Cossart,et al.  RESOLUTION OF SINGULARITIES OF THREEFOLDS IN POSITIVE CHARACTERISTIC II , 2008 .

[16]  S. Cutkosky,et al.  Ramification of valuations , 2004 .

[17]  Franz-Viktor Kuhlmann,et al.  Valuation Theoretic and Model Theoretic Aspects of Local Uniformization , 2010, 1003.5689.

[18]  M. Spivakovsky,et al.  Extending valuations to formal completions , 2012, 1211.0398.

[19]  A. Grothendieck Revetements etales et groupe fondamental , 1971 .

[20]  Shreeram S. Abhyankar,et al.  On the Ramification of algebraic functions , 1955 .

[21]  S. Saito,et al.  Canonical embedded and non-embedded resolution of singularities of excellent two-dimensional schemes , 2009, 0905.2191.

[22]  S. Abhyankar Ramification Theoretic Methods in Algebraic Geometry (AM-43), Volume 43 , 1959 .

[23]  H. Hauser On the problem of resolution of singularities in positive characteristic (Or: A proof we are still waiting for) , 2009 .

[24]  S. Abhyankar On the Valuations Centered in a Local Domain , 1956 .

[25]  A. Benito,et al.  Techniques for the study of singularities with applications to resolution of 2-dimensional schemes , 2011, 1103.3464.

[26]  William Fulton,et al.  Introduction to Toric Varieties. (AM-131) , 1993 .

[27]  S. Cutkosky,et al.  Ramification of local rings along valuations , 2013, 1309.0135.

[28]  Vincent Cossart,et al.  Resolution of singularities of threefolds in positive characteristic. I.: Reduction to local uniformization on Artin–Schreier and purely inseparable coverings , 2008 .

[29]  Completions of valuation rings , 2003, math/0310192.

[30]  W. Fulton Introduction to Toric Varieties. , 1993 .

[31]  Valuation semigroups of two‐dimensional local rings , 2011, 1105.1448.

[32]  Local factorization and monomialization of morphisms , 1998, math/9803078.

[33]  B. Teissier,et al.  Overweight deformations of affine toric varieties and local uniformization , 2014, 1401.5204.

[34]  M. Temkin Inseparable local uniformization , 2008, 0804.1554.

[35]  S. Cutkosky Ramification of Valuations and Local Rings in Positive Characteristic , 2016 .