A Factorization Algorithm for G-Algebras and Applications

It has been recently discovered by Bell, Heinle and Levandovskyy that a large class of algebras, including the ubiquitous G-algebras, are finite factorization domains (FFD for short). Utilizing this result, we contribute an algorithm to find all distinct factorizations of a given element f ∈ G, where G is any G-algebra, with minor assumptions on the underlying field. Moreover, the property of being an FFD, in combination with the factorization algorithm, enables us to propose an analogous description of the factorized Gröbner basis algorithm for G-algebras. This algorithm is useful for various applications, e.g. in analysis of solution spaces of systems of linear partial functional equations with polynomial coefficients, coming from G. Additionally, it is possible to include inequality constraints for ideals in the input.

[1]  H. Michael Möller,et al.  On decomposing systems of polynomial equations with finitely many solutions , 1993, Applicable Algebra in Engineering, Communication and Computing.

[2]  Fabrizio Caruso,et al.  Factorization of Non-Commutative Polynomials , 2010, ArXiv.

[3]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[4]  P. Cohn Free Ideal Rings and Localization in General Rings , 2006 .

[5]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[6]  Bernd Sturmfels,et al.  Algorithms for algebraic analysis , 2000 .

[7]  Anthony C. Hearn,et al.  REDUCE User's Manual, Version 3.8 , 2011 .

[8]  Y. N. Lakshman A Single Exponential Bound on the Complexity of Computing Gröbner Bases of Zero Dimensional Ideals , 1991 .

[9]  Werner M. Seiler,et al.  Involution - The Formal Theory of Differential Equations and its Applications in Computer Algebra , 2009, Algorithms and computation in mathematics.

[10]  José Gómez-Torrecillas,et al.  Algorithmic Methods in Non-Commutative Algebra , 2003 .

[11]  Lars Langemyr Algorithms for a Multiple Algebraic Extension II , 1991 .

[12]  J. Bell,et al.  On Noncommutative Finite Factorization Domains , 2014, 1410.6178.

[13]  Nathan Jacobson,et al.  Theory of rings , 1943 .

[14]  P. Cohn Unique Factorization Domains , 1973 .

[15]  Y. N. Lakshman,et al.  On the Complexity of Zero-dimensional Algebraic Systems , 1991 .

[16]  Matthias Aschenbrenner,et al.  Degree bounds for Gröbner bases in algebras of solvable type , 2007, 0710.4945.

[17]  Daniel Lazard,et al.  Solving Zero-Dimensional Algebraic Systems , 1992, J. Symb. Comput..

[18]  Stephen R. Czapor,et al.  Solving Algebraic Equations: Combining Buchberger's Algorithm with Multivariate Factorization , 1989, J. Symb. Comput..

[19]  Huishi Li,et al.  Noncommutative Gröbner Bases and Filtered-Graded Transfer , 2002 .

[20]  Yi Zhang,et al.  Contraction of Ore Ideals with Applications , 2015, ISSAC.

[21]  José Gómez-Torrecillas,et al.  Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum Groups , 2003 .

[22]  Mark Giesbrecht,et al.  Factoring linear differential operators in n variables , 2014, ISSAC.

[23]  F. J. Lobillo,et al.  RE-FILTERING AND EXACTNESS OF THE GELFAND-KIRILLOV DIMENSION , 2001 .

[24]  A. Meyer,et al.  The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .

[25]  Ralf Fröberg,et al.  An introduction to Gröbner bases , 1997, Pure and applied mathematics.

[26]  Stephen R. Czapor Solving algebraic equations via Buchberger's algorithm , 1987, EUROCAL.

[27]  B. Buchberger Gröbner Bases and Applications: Introduction to Gröbner Bases , 1998 .

[29]  Viktor Levandovskyy,et al.  Factorization of Z-homogeneous polynomials in the First (q)-Weyl Algebra , 2013, ArXiv.

[30]  Viktor Levandovskyy,et al.  Non-commutative Computer Algebra for polynomial algebras: Gröbner bases, applications and implementation , 2005 .

[31]  Daniel Lazard,et al.  Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.

[32]  Volker Weispfenning,et al.  Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..

[33]  Hans-Gert Gräbe,et al.  Triangular Systems and Factorized Gröbner Bases , 1995, AAECC.

[34]  Harrison Tsai,et al.  Weyl Closure of a Linear Differential Operator , 2000, J. Symb. Comput..

[35]  Werner M. Seiler Formal Geometry of Differential Equations , 2009 .

[36]  James H. Davenport,et al.  Looking at a set of equations , 1987 .

[37]  Y. N. Lakshman,et al.  On the complexity of computing a Gröbner basis for the radical of a zero dimensional ideal , 1990, STOC '90.

[38]  Mark Giesbrecht,et al.  Factoring linear partial differential operators in n variables , 2016, J. Symb. Comput..