Degradation in Efficiency of InGaN/GaN Multiquantum Well Solar Cells With Rising Temperature

In this article, the authors theoretically and experimentally investigate the mechanism of degradation of InGaN/GaN multi-quantum well (MQW) solar cells. InGaN/GaN MQW solar cells with chips of size <inline-formula> <tex-math notation="LaTeX">$1\times1$ </tex-math></inline-formula> mm2 were fabricated and characterized within a range of temperature of 50 °C–250 °C to determine the effects of dislocations on their efficiency. The internal intensity of X-ray diffractions was used to construct a 2-D physical model of the density of edge dislocations in the InGaN/GaN MQW that was then simulated in Silvaco. The results show that the relative error in <inline-formula> <tex-math notation="LaTeX">$\eta $ </tex-math></inline-formula> between the simulation and the experiment was less than 5% over the examined range of temperature. This shows that an intensified number of nonradiative recombinations owing to high temperature contribute to edge dislocations that eventually degrade the performance of photoelectric devices. The work here provides a theoretical and experimental basis for the growth of high-quality InGaN materials to fabricate highly efficient solar cells.

[1]  Jincheng Zhang,et al.  Mechanism of low Ohmic contact resistance to p-type GaN by suppressed edge dislocations , 2022, Applied Physics Letters.

[2]  Jing Li,et al.  Analysis of a novel photovoltaic/thermal system using InGaN/GaN MQWs cells in high temperature applications , 2021 .

[3]  J. Gordon,et al.  Temperature and intensity dependence of the open-circuit voltage of InGaN/GaN multi-quantum well solar cells , 2021, 2104.02114.

[4]  T. Lu,et al.  High Output Power GaN-Based Green Resonant-Cavity Light-Emitting Diodes With Trapezoidal Quantum Wells , 2020, IEEE Transactions on Electron Devices.

[5]  Jie Zheng,et al.  Statistical Analysis of the Photoelectric Characteristics for InGaN/GaN MQWs Solar Cells Following Proton Irradiation , 2020 .

[6]  F. Ponce,et al.  Evaluating the performance of InGaN/GaN multi-quantum-well solar cells operated at elevated temperatures via DC and small-signal AC analysis , 2019, Japanese Journal of Applied Physics.

[7]  Gaurav Siddharth,et al.  Analytical Study of Performance Parameters of InGaN/GaN Multiple Quantum Well Solar Cell , 2019, IEEE Transactions on Electron Devices.

[8]  S. Denbaars,et al.  High-Temperature Polarization-Free III-Nitride Solar Cells with Self-Cooling Effects , 2019, ACS Photonics.

[9]  A. Kapoor,et al.  Theoretical study of the effect of polarization matching layers on the Shockley–Read–Hall recombination-induced dark current density in InGaN/GaN heterostructure solar cells , 2019, Journal of Computational Electronics.

[10]  Y. Hao,et al.  Study on Dislocation Annihilation Mechanism of the High-Quality GaN Grown on Sputtered AlN/PSS and Its Application in Green Light-Emitting Diodes , 2019, IEEE Transactions on Electron Devices.

[11]  Liangliang Tang,et al.  Investigation on the effect of indium composition on ultrafast carrier dynamics in InGaN alloys , 2018, Japanese Journal of Applied Physics.

[12]  Yongjin Wang,et al.  Tandem dual-functioning multiple-quantum-well diodes for a self-powered light source. , 2018, Optics letters.

[13]  C. Honsberg,et al.  InGaN solar cells with regrown GaN homojunction tunnel contacts , 2018, Applied Physics Express.

[14]  Xuanqi Huang,et al.  Energy band engineering of InGaN/GaN multi-quantum-well solar cells via AlGaN electron- and hole-blocking layers , 2018, Applied Physics Letters.

[15]  L. Ying,et al.  Abnormal staircase-like I-V curve in InGaN quantum well solar cells , 2018 .

[16]  Zhijian Lu,et al.  Reliability analysis of InGaN/GaN multi-quantum-well solar cells under thermal stress , 2017 .

[17]  Bin Chen,et al.  The performance enhancement of an InGaN/GaN multiple-quantum-well solar cell by superlattice structure , 2017 .

[18]  A. Schenk,et al.  Trap-Tolerant Device Geometry for InAs/Si pTFETs , 2017, IEEE Electron Device Letters.

[19]  A. Aissat,et al.  Efficiency optimization of the structure pin-InGaN/GaN and quantum well-InGaN for solar cells , 2016 .

[20]  Xiaodong Wang,et al.  Positive temperature coefficient of photovoltaic efficiency in solar cells based on InGaN/GaN MQWs , 2016 .

[21]  Eva Monroy,et al.  Dependence of the photovoltaic performance of pseudomorphic InGaN/GaN multiple-quantum-well solar cells on the active region thickness , 2016 .

[22]  Zhong Lin Wang,et al.  Piezo-Phototronic Effect in a Quantum Well Structure. , 2016, ACS nano.

[23]  Hao-Chung Kuo,et al.  Enhanced power conversion efficiency in InGaN-based solar cells via graded composition multiple quantum wells. , 2015, Optics express.

[24]  T. Hanada,et al.  Red to blue wavelength emission of N-polar InGaN light-emitting diodes grown by metalorganic vapor phase epitaxy , 2015 .

[25]  Li-Wei Tu,et al.  Conversion Efficiency Improvement of InGaN/GaN Multiple-Quantum-Well Solar Cells With Ex Situ AlN Nucleation Layer , 2015, IEEE Transactions on Electron Devices.

[26]  D. P. Norman,et al.  PiN InGaN nanorod solar cells with high short-circuit current , 2015 .

[27]  W. Doolittle,et al.  Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells , 2014 .

[28]  John E. Bowers,et al.  High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration , 2014 .

[29]  Feng Gao,et al.  The effect of dislocations on the efficiency of InGaN/GaN solar cells , 2013 .

[30]  L. Sang,et al.  Temperature and Light Intensity Dependence of Photocurrent Transport Mechanisms in InGaN p–i–n Homojunction Solar Cells , 2013 .

[31]  Diego Marti,et al.  Transistor Modeling: Robust Small-Signal Equivalent Circuit Extraction in Various HEMT Technologies , 2013, IEEE Microwave Magazine.

[32]  Y. Hao,et al.  Proton irradiation effects on HVPE GaN , 2012 .

[33]  Y. Kuo,et al.  Numerical Study of the Effects of Hetero-Interfaces, Polarization Charges, and Step-Graded Interlayers on the Photovoltaic Properties of (0001) Face GaN/InGaN p-i-n Solar Cell , 2012, IEEE Journal of Quantum Electronics.

[34]  L. Li,et al.  Study of proton irradiation effects on AlGaN/GaN high electron mobility transistors , 2011, Microelectron. Reliab..

[35]  Jing Li,et al.  Nature of deep center emissions in GaN , 2010 .

[36]  Wladek Walukiewicz,et al.  Finite element simulations of compositionally graded InGaN solar cells , 2010 .

[37]  Feng Xu,et al.  Different origins of the yellow luminescence in as-grown high-resistance GaN and unintentional-doped GaN films , 2010 .

[38]  Rajendra Dahal,et al.  InGaN/GaN multiple quantum well solar cells with long operating wavelengths , 2009 .

[39]  J. Kim,et al.  Effect of dislocations on electrical and optical properties of n-type Al0.34Ga0.66N , 2008 .

[40]  E. Fred Schubert,et al.  Effect of dislocation density on efficiency droop in GaInN∕GaN light-emitting diodes , 2007 .

[41]  Oliver Ambacher,et al.  Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures , 2002 .

[42]  Hyung Jae Lee,et al.  Electron traps and growth rate of buffer layers in unintentionally doped GaN , 2001 .

[43]  Tai-Yuan Lin,et al.  Nature of the 2.8-eV photoluminescence band in Si-doped GaN , 2000 .

[44]  T. Niina,et al.  A high brightness GaP multicolor LED , 1981, IEEE Transactions on Electron Devices.