McKay Quivers and Lusztig Algebras of Some Finite Groups

We are interested in the McKay quiver Γ(G) and skew group rings A ∗G, where G is a finite subgroup of GL(V ), where V is a finite dimensional vector space over a field K, and A is a K −G-algebra. These skew group rings appear in Auslander’s version of the McKay correspondence. In the first part of this paper we consider complex reflection groups $\mathsf {G} \subseteq \text {GL}(V)$ G ⊆ GL ( V ) and find a combinatorial method, making use of Young diagrams, to construct the McKay quivers for the groups G(r,p,n). We first look at the case G(1,1,n), which is isomorphic to the symmetric group Sn, followed by G(r,1,n) for r > 1. Then, using Clifford theory, we can determine the McKay quiver for any G(r,p,n) and thus for all finite irreducible complex reflection groups up to finitely many exceptions. In the second part of the paper we consider a more conceptual approach to McKay quivers of arbitrary finite groups: we define the Lusztig algebra $\widetilde {A}(\mathsf {G})$ A ~ ( G ) of a finite group $\mathsf {G} \subseteq \text {GL}(V)$ G ⊆ GL ( V ) , which is Morita equivalent to the skew group ring A ∗G. This description gives us an embedding of the basic algebra Morita equivalent to A ∗ G into a matrix algebra over A.

[1]  Maurice Auslander,et al.  Rational singularities and almost split sequences , 1986 .

[2]  Moduli of McKay quiver representations II: Gröbner basis techniques , 2006, math/0611840.

[3]  G. Gonzalez-Sprinberg,et al.  Construction géométrique de la correspondance de McKay , 1983 .

[4]  Eli Bagno,et al.  Colored-descent representations of complex reflection groups G(r, p, n) , 2005, math/0503238.

[5]  Exterior algebra structure on relative invariants of reflection groups , 2009, 0903.1586.

[6]  W. Fulton Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .

[7]  Travis Schedler,et al.  Superpotentials and higher order derivations , 2008, 0802.0162.

[8]  I. Reiten,et al.  Stable categories of Cohen-Macaulay modules and cluster categories: Dedicated to Ragnar-Olaf Buchweitz on the occasion of his sixtieth birthday , 2011, 1104.3658.

[9]  A. Cohen,et al.  Finite complex reflection groups , 1976 .

[10]  D. E. Taylor,et al.  Unitary Reflection Groups , 2009 .

[11]  Joshua P. Swanson ON EIGENVALUES OF REPRESENTATIONS OF REFLECTION GROUPS AND WREATH PRODUCTS , 2016 .

[12]  M. Liebeck,et al.  Representations and Characters of Groups , 1995 .

[13]  A. Wagner Determination of the finite primitive reflection groups over an arbitrary field of characteristic not two , 1981 .

[14]  J. Karmazyn Superpotentials, Calabi-Yau algebras, and PBW deformations , 2012, 1210.1341.

[15]  G. Lusztig On Quiver Varieties , 1998 .

[16]  Randall R. Holmes Linear Representations of Finite Groups , 2008 .

[17]  J. McKay,et al.  Representations and Coxeter Graphs , 1981 .

[18]  Complex Reflection Groups and Fake Degrees , 1998, math/9808026.

[19]  Lieven Le Bruyn,et al.  Two Dimensional Tame and Maximal Orders of Finite Representation Type , 1989 .

[20]  M. Broué Introduction to Complex Reflection Groups and Their Braid Groups , 2010 .

[21]  Ascher Wagner,et al.  Determination of the finite primitive reflection groups over an arbitrary field of characteristic not 2 , 1980 .

[22]  H. Dao,et al.  Noncommutative (Crepant) Desingularizations and the Global Spectrum of Commutative Rings , 2014, 1401.3000.

[23]  John R. Britnell,et al.  Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in Dynkin Types A, B and D , 2015, J. Comb. Theory, Ser. A.

[24]  G. C. Shephard,et al.  Finite Unitary Reflection Groups , 1954, Canadian Journal of Mathematics.

[25]  Y. Yoshino,et al.  Cohen-Macaulay modules over Cohen-Macaulay rings , 1990 .

[26]  Determination of the finite quaternary linear groups , 1913 .

[27]  O. Iyama Cluster tilting for higher Auslander algebras , 2008, 0809.4897.

[28]  A. Duncan COHEN‐MACAULAY MODULES OVER COHEN‐MACAULAY RINGS , 1992 .

[29]  Wolfgang Soergel,et al.  Koszul Duality Patterns in Representation Theory , 1996 .

[30]  R. Brauer A note on theorems of Burnside and Blichfeldt , 1964 .

[31]  H. H. Mitchell Determination of All Primitive Collineation Groups in More than Four Variables which Contain Homologies , 1914 .

[32]  Fredrik Meyer,et al.  Representation theory , 2015 .

[33]  N. Jing,et al.  Generalized McKay quivers of rank three , 2012, 1207.2823.

[34]  John R. Stembridge,et al.  ON THE EIGENVALUES OF REPRESENTATIONS OF REFLECTION GROUPS AND WREATH PRODUCTS , 1989 .

[35]  J. McConnell,et al.  Noncommutative Noetherian Rings , 2001 .

[36]  Howard H. Mitchell,et al.  Determination of the ordinary and modular ternary linear groups , 1911 .

[37]  W. Crawley-Boevey Preprojective algebras, differential operators and a Conze embedding for deformations of Kleinian singularities , 1999 .

[38]  G. Kemper,et al.  The finite irreducible linear groups with polynomial ring of invariants , 1997 .

[39]  M. Khovanov,et al.  A Category for the Adjoint Representation , 2000, math/0002060.

[40]  C. M. Ringelby The Preprojective Algebra of a Quiver , 1997 .

[41]  C. Chauve,et al.  COMBINATORIAL OPERATORS FOR KRONECKER POWERS OF REPRESENTATIONS OF Sn , 2006 .

[42]  R. Buchweitz,et al.  Noncommutative resolutions of discriminants , 2017, 1702.00791.

[43]  A E Zalesskiĭ,et al.  FINITE LINEAR GROUPS GENERATED BY REFLECTIONS , 1981 .

[44]  Jin Yun Guo,et al.  ALGEBRA PAIRS ASSOCIATED TO McKAY QUIVERS , 2002 .

[45]  S. Ariki,et al.  A Hecke Algebra of (Z/rZ)Sn and Construction of Its Irreducible Representations , 1994 .

[46]  R. Buchweitz,et al.  A McKay correspondence for reflection groups , 2017, Duke Mathematical Journal.

[47]  A. Broer On Chevalley-Shephard-Todd's Theorem in Positive Characteristic , 2007, 0709.0715.

[48]  Edward L. Green,et al.  δ-Koszul Algebras , 2005 .

[49]  Jean-Pierre Serre,et al.  Linear representations of finite groups , 1977, Graduate texts in mathematics.

[50]  Graham J. Leuschke,et al.  Cohen-Macaulay Representations , 2012 .