Modeling Harmonic Similarity Using a Generative Grammar of Tonal Harmony

Process for removing unwanted material from wanted material containing water by bringing an isocyanate-containing prepolymer into contact with the materials, allowing the prepolymer to react with the water to form a flexible foam and removing the foam obtained from the wanted material.

[1]  William Drabkin,et al.  THE CONCEPT OF MUSICAL GRAMMAR , 1983 .

[2]  S. Jeong Harmony , 2012, SIGGRAPH '12.

[3]  Pekka Kilpeläinen,et al.  Tree Matching Problems with Applications to Structured Text Databases , 2022 .

[4]  Remco C. Veltkamp,et al.  Tonal Pitch Step Distance: a Similarity Measure for Chord Progressions , 2008, ISMIR.

[5]  Jay Earley,et al.  An efficient context-free parsing algorithm , 1970, Commun. ACM.

[6]  Masafumi Nishida,et al.  Analysis of Chord Progression by HPSG , 2006, Artificial Intelligence and Applications.

[7]  Aniruddh D. Patel,et al.  Language, music, syntax and the brain , 2003, Nature Neuroscience.

[8]  Heinrich Schenker,et al.  Der freie Satz , 1935 .

[9]  鐘期 坂本,et al.  Tonal Pitch Space を用いた楽曲の和声解析 , 2009 .

[10]  F. Pachet,et al.  Surprising Harmonies , 1999 .

[11]  Heinrich Schenker,et al.  Neue musikalische Theorien und Phantasien , 1906 .

[12]  E. Bigand,et al.  More About the Musical Expertise of Musically Untrained Listeners , 2003, Annals of the New York Academy of Sciences.

[13]  Mark Steedman The Blues and the Abstract Truth: Music and Mental Models , 2009 .

[14]  R. Jackendoff,et al.  A Generative Theory of Tonal Music , 1985 .

[15]  Mark Steedman,et al.  A Generative Grammar for Jazz Chord Sequences , 1984 .

[16]  M. Rohrmeier A generative grammar approach to diatonic harmonic structure , 2007 .

[17]  Irène Deliège,et al.  Musical Schemata in Real-Time Listening to a Piece of Music , 1996 .

[18]  Naomi Nishimura,et al.  Finding Largest Subtrees and Smallest Supertrees , 1998, Algorithmica.

[19]  Marc Chemillier Toward a formal study of jazz chord sequences generated by Steedman’s grammar , 2004, Soft Comput..

[20]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .