An equation-free, multiscale approach to uncertainty quantification

The authors' equation- and Galerkin-free computational approach to uncertainty quantification for dynamical systems conducts UQ computations using short bursts of appropriately initialized ensembles of simulations. Their basic procedure estimates the quantities arising in stochastic Galerkin computations.

[1]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[2]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[3]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[4]  Ioannis G. Kevrekidis,et al.  Telescopic projective methods for parabolic differential equations , 2003 .

[5]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[6]  Humberto Contreras,et al.  The stochastic finite-element method , 1980 .

[7]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[8]  Panayotis G. Kevrekidis,et al.  Deciding the Nature of the Coarse Equation through Microscopic Simulations: The Baby-Bathwater Scheme , 2007, SIAM Rev..

[9]  Wing Kam Liu,et al.  Random field finite elements , 1986 .

[10]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Dongbin Xiu,et al.  Equation-Free, Multiscale Computation for Unsteady Random Diffusion , 2005, Multiscale Model. Simul..

[12]  Wing Kam Liu,et al.  Probabilistic finite elements for nonlinear structural dynamics , 1986 .

[13]  Christian Soize,et al.  Polynomial chaos representation of a stochastic preconditioner , 2005 .

[14]  森山 昌彦,et al.  「確率有限要素法」(Stochastic Finite Element Method) , 1985 .

[15]  Christian Soize,et al.  Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .

[16]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[17]  Constantinos Theodoropoulos,et al.  Effective bifurcation analysis: a time-stepper-based approach , 2002 .

[18]  C. Kelley,et al.  Newton-Krylov solvers for time-steppers , 2004, math/0404374.

[19]  Ioannis G. Kevrekidis,et al.  “Coarse” stability and bifurcation analysis using stochastic simulators: Kinetic Monte Carlo examples , 2001, nlin/0111038.

[20]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[21]  N. Wiener The Homogeneous Chaos , 1938 .

[22]  Ioannis G. Kevrekidis,et al.  The gap-tooth method in particle simulations , 2003 .

[23]  Ioannis G. Kevrekidis,et al.  Coarse bifurcation analysis of kinetic Monte Carlo simulations: A lattice-gas model with lateral interactions , 2002 .

[24]  A. B. Poore,et al.  On the dynamic behavior of continuous stirred tank reactors , 1974 .

[25]  Ioannis G. Kevrekidis,et al.  Equation-free: The computer-aided analysis of complex multiscale systems , 2004 .

[26]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[27]  I. Kevrekidis,et al.  "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[28]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .

[29]  Ioannis G. Kevrekidis,et al.  Coarse projective kMC integration: forward/reverse initial and boundary value problems , 2003, nlin/0307016.

[30]  Ioannis G. Kevrekidis,et al.  Projective Methods for Stiff Differential Equations: Problems with Gaps in Their Eigenvalue Spectrum , 2002, SIAM J. Sci. Comput..