Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS

[1] The 2001 Mars Odyssey Gamma Ray Spectrometer (GRS) has made the first measurement of the equatorial and midlatitude distribution of Cl at the near-surface of Mars. A mean concentration value of 0.49 wt% Cl has been determined from a grand sum of GRS spectra collected over the planet excluding high-latitude regions. Cl is significantly enriched within the upper few tens of centimeters of the surface relative to the Martian meteorites and estimates for the bulk composition of the planet. However, Cl is not homogeneously distributed and varies by a factor of ∼4 even after smoothing of data with a 10°-arc-radius filter. Several contiguous, geographically large (>20°) regions of high and low Cl concentrations are present. In particular, a region centered over the Medusae Fossae Formation west of Tharsis shows significantly elevated Cl. A large region north of Syrtis Major extending into Utopia Planitia in the northern hemisphere shows the lowest Cl concentrations. On the basis of hierarchical multivariate correlations, Cl is positively associated with H while negatively associated with Si and thermal inertia. We discuss four possible geologic mechanisms (aeolian, volcanic, aqueous, and hydrothermal) that may have affected the Cl distribution seen by GRS. While some of the distribution may be due to Cl-rich dust deposits transported by aeolian processes, this mechanism does not appear to account for all of the observed variability. We propose that reactions with volcanic exhalations may have been important for enriching Cl in Medusae Fossae Formation material.

[1]  Ronald Greeley,et al.  Geologic map of the eastern equatorial region of Mars , 1987 .

[2]  Trent M. Hare,et al.  The northwestern slope valleys (NSVs) region, Mars: a prime candidate site for the future exploration of Mars , 2004 .

[3]  M. Malin,et al.  Sedimentary rocks of early Mars. , 2000, Science.

[4]  R. Reedy Planetary gamma-ray spectroscopy , 1978 .

[5]  R. Wilson,et al.  Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model , 2002 .

[6]  R. Rieder,et al.  Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer , 2004, Science.

[7]  Raymond E. Arvidson,et al.  Global thermal inertia and surface properties of Mars from the MGS mapping mission , 2005 .

[8]  A. K. Baird,et al.  Is the Martian lithosphere sulfur rich , 1979 .

[9]  David C. Pieri,et al.  Coastal Geomorphology of the Martian northern plains , 1993 .

[10]  Jeffrey R. Barnes,et al.  Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 1. The zonal‐mean circulation , 1993 .

[11]  Robert Haining,et al.  Spatial Data Analysis: Theory and Practice , 2003 .

[12]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[13]  P. Christensen Global albedo variations on Mars: Implications for active aeolian transport, deposition, and erosion , 1988 .

[14]  H. Newsom,et al.  Mixed Hydrothermal Fluids and the Origin of the Martian Soil: A New Quantitative Model , 1999 .

[15]  K Davis,et al.  Localization and Physical Property Experiments Conducted by Opportunity at Meridiani Planum , 2004, Science.

[16]  D. H. Scott,et al.  Ignimbrites of Amazonis Planitia region of Mars , 1982 .

[17]  Jeffrey R. Johnson,et al.  Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars , 2005 .

[18]  Lorraine Schnabel,et al.  Chemical composition of Martian fines , 1982 .

[19]  K. Edgett Aeolian Dunes as Evidence for Explosive Volcanism in the Tharsis Region of Mars , 1997 .

[20]  Robert C. Anderson,et al.  Episodic flood inundations of the northern plains of Mars , 2003 .

[21]  Richard D. Starr,et al.  Science applications of the Mars Observer gamma ray spectrometer , 1992 .

[22]  Joshua L. Bandfield,et al.  Global mineral distributions on Mars , 2002 .

[23]  H. Wänke,et al.  Chemistry and accretion history of Mars , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[24]  R. Burns,et al.  Iron‐sulfur mineralogy of Mars: Magmatic evolution and chemical weathering products , 1990 .

[25]  D. Mckay,et al.  Neutron Capture Isotopes in the Martian Regolith and Implications for Martian Atmospheric Noble Gases , 2002 .

[26]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[27]  F Forget,et al.  Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity , 2006, Science.

[28]  H. J. Moore,et al.  The Martian surface layer , 1992 .

[29]  Philip R. Christensen,et al.  Thermal Infrared Emission Spectroscopy of Salt Minerals Predicted for Mars , 1998 .

[30]  S. Squyres,et al.  Effects of material mixing on planetary gamma ray spectroscopy , 1992 .

[31]  D. H. Scott,et al.  Latent outflow activity for western Tharsis, Mars: Significant flood record exposed , 2001 .

[32]  Cary R. Spitzer,et al.  Physical properties of the surface materials at the Viking landing sites on Mars , 1987 .

[33]  William V. Boynton,et al.  THARSIS/ELYSIUM CORRIDOR: A MARKER FOR AN INTERNALLY ACTIVE MARS?: , 2006 .

[34]  D. H. Scott,et al.  GEOLOGIC MAP OF THE WESTERN EQUATORIAL REGION OF MARS , 1986 .

[35]  B. Fegley,et al.  An Oxygen Isotope Model for the Composition of Mars , 1997 .

[36]  D. H. Scott,et al.  Geologic map of Arsia Mons Volcano, Mars , 1995 .

[37]  J. Kargel Proof for Water, Hints of Life? , 2004, Science.

[38]  J. Head,et al.  Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. , 1994 .

[39]  D. H. Scott,et al.  Geologic map of science study area 6, Memnonia region of Mars , 1991 .

[40]  S. Sutton,et al.  Clues to Martian brines based on halogens in salts from nakhlites and MER samples , 2005 .

[41]  D. Ming,et al.  Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater , 2005, Nature.

[42]  M. Settle Formation and deposition of volcanic sulfate aerosols on Mars , 1979 .

[43]  M. Chapman,et al.  Geologic map of the MTM -05152 and -10152 quadrangles, Mangala Valles region of Mars , 1993 .

[44]  Rudolf Rieder,et al.  Refined data of Alpha Proton X-ray Spectrometer analyses of soils and rocks at the Mars Pathfinder site: Implications for surface chemistry , 2003 .

[45]  William H. Farrand,et al.  Chemistry and mineralogy of outcrops at Meridiani Planum , 2005 .

[46]  M. Malin,et al.  Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission , 2001 .

[47]  R. Clayton,et al.  Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer , 2003 .

[48]  Martin P. Ward,et al.  The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite , 2004 .

[49]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[50]  A. Banin,et al.  Acidic volatiles and the Mars soil , 1997 .

[51]  R. J. Reid,et al.  Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder , 2000 .

[52]  Trent M. Hare,et al.  Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes , 2001 .

[53]  M. Malin,et al.  High-Resolution Thermal Imaging of Mars , 1987 .

[54]  Richard D. Starr,et al.  Analysis of gamma ray spectra measured by Mars Odyssey , 2007 .

[55]  D. H. Scott,et al.  Geologic and topographic maps of the Elysium Paleolake basin, Mars , 1995 .

[56]  Rudolf Rieder,et al.  Chemical Composition of Rocks and Soils at the Pathfinder Site , 2001 .

[57]  C. Weitz,et al.  Theoretical modeling of eruption plumes on Mars under current and past climates , 2001 .

[58]  G. J. Taylor,et al.  Composition of northern low-albedo regions of Mars : Insights from the Mars Odyssey Gamma Ray Spectrometer , 2007 .

[59]  D. Ferrill,et al.  Distribution, morphology, and origins of Martian pit crater chains , 2004 .

[60]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[61]  Philip R. Christensen,et al.  The spatial distribution of rocks on mars , 1986 .

[62]  J. Grant,et al.  The Medusae Fossae Formation, Amazonis Planitia, Mars: Evaluation of Proposed Hypotheses of Origin , 1997 .

[63]  Richard V. Morris,et al.  Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples , 2000 .

[64]  M. Carr,et al.  Possible precipitation of ice at low latitudes of Mars during periods of high obliquity , 1985, Nature.

[65]  P. Mouginis-Mark Prodigious ash deposits near the summit of Arsia Mons volcano, Mars , 2002 .

[66]  Steven W. Squyres,et al.  Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .

[67]  Robert C. Anderson,et al.  Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars , 2001 .

[68]  Richard D. Starr,et al.  Variations in K/Th on Mars , 2007 .

[69]  B. Clark,et al.  The salts of Mars , 1981 .

[70]  A. K. Baird,et al.  Inorganic Analyses of Martian Surface Samples at the Viking Landing Sites , 1976, Science.

[71]  R. Arvidson,et al.  Explosive volcanism in the Tharsis region: Global evidence in the Martian geologic record , 2003 .

[72]  P. Christensen Regional dust deposits on Mars - Physical properties, age, and history , 1986 .

[73]  Kenneth S. Edgett,et al.  Geologic context of the Mars radar "Stealth" region , 1997 .

[74]  Scott M. McLennan,et al.  Acid-sulfate weathering of synthetic Martian basalt: The acid fog model revisited , 2004 .

[75]  A. Banin,et al.  Surface chemistry and mineralogy , 1992 .