The mechanism of defect creation and passivation at the SiC/SiO2 interface

From the viewpoint of application in power electronics, SiC possesses the greatest advantage of having SiO2 as its native oxide. Unfortunately, the usual thermal oxidation produces an unacceptably high density of interface states, with a complex energy distribution. Deep states are assumed to be caused by carbon excess at the interface, while the slow electron traps, called NIT, with especially high density near the conduction band of 4H-SiC (which would be the best polytype for power devices), are expected to originate from oxide defects near the interface. Unlike the case of the Si/SiO2 interface, simple hydrogen passivation does not help to reduce the high trap density. A possible passivation method for both deep states and NIT is post-oxidation annealing or oxidation in the presence of NO or N2O molecules. Here we present systematic and sophisticated theoretical calculations on a model of the 4H-SiC/SiO2 interface, in order to establish the main reaction routes and the most important defects that are created during dry oxidation, and may give rise to the observed interface traps. We also investigate the effect of nitrogen in suppressing them.

[1]  Á. Gali,et al.  The Mechanism of Interface State Passivation by NO , 2007 .

[2]  H. Tsuchida,et al.  Generation of Amorphous SiO2/SiC Interface Structure by the First-Principles Molecular Dynamics Simulation , 2007 .

[3]  H. Ólafsson,et al.  Sodium Enhanced Oxidation of Si-Face 4H-SiC: A Method to Remove Near Interface Traps , 2007 .

[4]  V. Afanas’ev,et al.  Nitrogen Implantation - An Alternative Technique to Reduce Traps at SiC/SiO2-Interfaces , 2006 .

[5]  Leonard C. Feldman,et al.  Nitrogen and Hydrogen Induced Trap Passivation at the SiO2/4H-SiC Interface , 2006 .

[6]  Leonard C. Feldman,et al.  Si/SiO2 and SiC/SiO2 Interfaces for MOSFETs – Challenges and Advances , 2006 .

[7]  W. J. Choyke,et al.  Where Would the Electronic States of a Small Graphite-Like Carbon Island Contribute to the SiC/SiO2 Interface State Density Distribution? , 2006 .

[8]  H. Zirath,et al.  High Channel Mobility 4H-SiC MOSFETs , 2006 .

[9]  J. Scofield,et al.  Improved 4H-SiC MOS Interfaces Produced via Two Independent Processes: Metal Enhanced Oxidation and 1300°C NO Anneal , 2006 .

[10]  W. J. Choyke,et al.  Hydrogen passivation of carbon Pb like centers at the 3C- and 4H-SiC∕SiO2 interfaces in oxidized porous SiC , 2006 .

[11]  Peter Deák,et al.  Defects in SiO2 as the possible origin of near interface traps in the SiC∕SiO2 system: A systematic theoretical study , 2005 .

[12]  S. Dhar,et al.  Interface trap passivation for SiO2∕(0001¯) C-terminated 4H-SiC , 2005 .

[13]  Thomas Frauenheim,et al.  Theoretical study of the mechanism of dry oxidation of 4H-SiC , 2005 .

[14]  Á. Gali,et al.  Electronic structure of boron-interstitial clusters in silicon , 2005 .

[15]  A. Shluger,et al.  Structure and properties of defects in amorphous silica: new insights from embedded cluster calculations , 2005 .

[16]  W. J. Choyke,et al.  The Search for Near Interface Oxide Traps - First-Principles Calculations on Intrinsic SiO2 Defects , 2005 .

[17]  V. Afanas’ev,et al.  Low Density of Interface States in n-Type 4H-SiC MOS Capacitors Achieved by Nitrogen Implantation , 2005 .

[18]  H. Ólafsson,et al.  High Field Effect Mobility in 6H-SiC MOSFET with Gate Oxides Grown in Alumina Environment , 2005 .

[19]  P. Nilsson,et al.  Field Effect Mobility in n-Channel Si Face 4H-SiC MOSFET with Gate Oxide Grown on Aluminium Ion-Implanted Material , 2005 .

[20]  Einar Ö. Sveinbjörnsson,et al.  Interfaces between 4H-SiC and SiO2: Microstructure, nanochemistry, and near-interface traps , 2005 .

[21]  A. Pasquarello,et al.  Multiscale modeling of oxygen diffusion through the oxide during silicon oxidation , 2004 .

[22]  A. Stoneham,et al.  Modeling of the structure and properties of oxygen vacancies in amorphous silica , 2004 .

[23]  W. E. Collins,et al.  Graphitic features on SiC surface following oxidation and etching using surface enhanced Raman spectroscopy , 2004 .

[24]  Alexander Mattausch,et al.  Structure and vibrational spectra of carbon clusters in SiC , 2004, cond-mat/0409318.

[25]  S. Pantelides,et al.  Optically active defects in SiO2: The nonbridging oxygen center and the interstitial OH molecule , 2004 .

[26]  J. Cooper,et al.  Electrical, structural, and chemical analysis of silicon carbide-based metal-oxide-semiconductor field-effect-transistors , 2004 .

[27]  T. Fuyuki,et al.  Radical Nitridation of Ultra-Thin SiO2/SiC Structure , 2004 .

[28]  H. Ólafsson,et al.  Enhancement of Inversion Channel Mobility in 4H-SiC MOSFETs using a Gate Oxide Grown in Nitrous Oxide (N2O) , 2004 .

[29]  P. Godignon,et al.  First-Principles Study of O Adsorption at SiC Surface , 2004 .

[30]  V. Afanas’ev,et al.  Band alignment and defect states at SiC/oxide interfaces , 2004 .

[31]  A. Lelis,et al.  Structure of 6H silicon carbide/silicon dioxide interface trapping defects , 2004 .

[32]  W. Orellana Energetic of nitrogen incorporation reactions in SiO2 , 2004 .

[33]  W. J. Choyke,et al.  Identification of the carbon dangling bond center at the 4H-SiC/SiO(2) interface by an EPR study in oxidized porous SiC. , 2004, Physical review letters.

[34]  A. Fazzio,et al.  Diffusion-reaction mechanisms of nitriding species in SiO2 , 2003, cond-mat/0311634.

[35]  W. J. Choyke,et al.  Silicon carbide : recent major advances , 2004 .

[36]  Peter Deák,et al.  Defects of the SiC/SiO2 interface: energetics of the elementary steps of the oxidation reaction , 2003 .

[37]  Á. Gali,et al.  Theoretical study of vacancy diffusion and vacancy-assisted clustering of antisites in SiC , 2003 .

[38]  K. Fukuda,et al.  Thermal oxidation of (0001) 4H-SiC at high temperatures in ozone-admixed oxygen gas ambient , 2003 .

[39]  W. J. Choyke,et al.  A Cause for SiC/SiO2 Interface States: the Site Selection of Oxygen in SiC , 2003 .

[40]  T. Kamiya,et al.  Electronic structure of oxygen dangling bond in glassy SiO2: the role of hyperconjugation. , 2003, Physical review letters.

[41]  L. Porter,et al.  Nanoscale characterization of the silicon dioxide-silicon carbide interface using elemental mapping by energy-filtered transmission electron microscopy , 2003 .

[42]  W. J. Choyke,et al.  Correlation between the antisite pair and the D-I center in SiC , 2003 .

[43]  H. Ólafsson,et al.  Observation of interface defects in thermally oxidized SiC using positron annihilation , 2003 .

[44]  T. Sakurai,et al.  Interface states at SiO 2 / 6 H − SiC ( 0001 ) interfaces observed by x-ray photoelectron spectroscopy measurements under bias: Comparison between dry and wet oxidation , 2003 .

[45]  L. Feldman,et al.  Characterization and modeling of the nitrogen passivation of interface traps in SiO2/4H–SiC , 2003 .

[46]  Andre Stesmans,et al.  Mechanisms responsible for improvement of 4H-SiC/SiO2 interface properties by nitridation , 2003 .

[47]  peixiong zhao,et al.  Structure, properties, and dynamics of oxygen vacancies in amorphous SiO2. , 2002, Physical review letters.

[48]  T. Germann,et al.  Atomistic mechanism for hot spot initiation. , 2002, Physical review letters.

[49]  W. J. Choyke,et al.  Isolated oxygen defects in 3C- and 4H-SiC: A theoretical study , 2002 .

[50]  Mario G. Ancona,et al.  Using the Hall effect to measure interface trap densities in silicon carbide and silicon metal-oxide-semiconductor devices , 2002 .

[51]  Einar Ö. Sveinbjörnsson,et al.  On Shallow Interface States in n-Type 4H-SiC Metal-Oxide-Semiconductor Structures , 2002 .

[52]  T. Frauenheim,et al.  Theoretical study of the nonpolar surfaces and their oxygen passivation in 4H- and 6H-SiC , 2001 .

[53]  I. N. Osiyuk,et al.  Border traps in 6H-SiC metal–oxide–semiconductor capacitors investigated by the thermally-stimulated current technique , 2001 .

[54]  U. Gerstmann,et al.  Approximate density-functional calculations of spin densities in large molecular systems and complex solids , 2001 .

[55]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[56]  S. Dimitrijev,et al.  Effects of nitridation in gate oxides grown on 4H-SiC , 2001 .

[57]  D. Chadi Intrinsic and H-induced defects at Si-SiO 2 interfaces , 2001 .

[58]  S. Suhai,et al.  Theoretical investigation of carbon defects and diffusion in α-quartz , 2001 .

[59]  Sima Dimitrijev,et al.  Physical Properties of N2O and NO-nitrided gate oxides grown on 4H-SiC , 2001 .

[60]  A. Stoneham,et al.  Atomic and ionic processes of silicon oxidation , 2001 .

[61]  M. Ventra,et al.  Atomic-scale dynamics of the formation and dissolution of carbon clusters in SiO(2). , 2001, Physical review letters.

[62]  György Vida,et al.  Carbon Diffusion through SiO2 from a Hydrogenated Amorphous Carbon Layer and Accumulation at the SiO2/Si Interface , 2001 .

[63]  K. Chang,et al.  Mechanism for the enhanced diffusion of charged oxygen ions in SiO2. , 2001, Physical review letters.

[64]  L. Johansson,et al.  Interfacial investigation of in situ oxidation of 4H-SiC , 2001 .

[65]  C. Mapelli,et al.  Origin of the D line in the Raman spectrum of graphite: A study based on Raman frequencies and intensities of polycyclic aromatic hydrocarbon molecules , 2001 .

[66]  Qamar Ul Wahab,et al.  High-carbon concentrations at the silicon dioxide–silicon carbide interface identified by electron energy loss spectroscopy , 2000 .

[67]  Car,et al.  Dangling bond defects at Si-SiO2 interfaces: atomic structure of the P(b1) center , 2000, Physical review letters.

[68]  P. Blöchl First-principles calculations of defects in oxygen-deficient silica exposed to hydrogen , 2000 .

[69]  N. Saks,et al.  Effect of oxidation and reoxidation on the oxide-substrate interface of 4H- and 6H-SiC , 2000 .

[70]  Kenji Fukuda,et al.  Improvement of charge trapping by hydrogen post-oxidation annealing in gate oxide of 4H–SiC metal–oxide–semiconductor capacitors , 2000 .

[71]  Effects of nitridation and annealing on interface properties of thermally oxidized SiO2/SiC metal–oxide–semiconductor system , 2000 .

[72]  P.T. Lai,et al.  Improved performance and reliability of N2O-grown oxynitride on 6H-SiC , 2000, IEEE Electron Device Letters.

[73]  Anant K. Agarwal,et al.  Interface trap profile near the band edges at the 4H-SiC/SiO2 interface , 2000 .

[74]  L. Feldman,et al.  Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide , 2000 .

[75]  HF chemical etching of SiO2 on 4H and 6H SiC , 2000 .

[76]  Pantelides,et al.  Bonding arrangements at the Si-SiO2 and SiC-SiO2 interfaces and a possible origin of their contrasting properties , 2000, Physical review letters.

[77]  H. B. Harrison,et al.  Investigation of nitric oxide and Ar annealed SiO2/SiC interfaces by x-ray photoelectron spectroscopy , 1999 .

[78]  M. Ventra,et al.  Atomic-scale mechanisms of oxygen precipitation and thin-film oxidation of SiC , 1999 .

[79]  A. Stesmans,et al.  SiC/SiO2 interface-state generation by electron injection , 1999 .

[80]  P. Friedrichs,et al.  Significantly improved performance of MOSFETs on silicon carbide using the 15R-SiC polytype , 1999, IEEE Electron Device Letters.

[81]  Dong Ning Wang,et al.  On the correlation between the carbon content and the electrical quality of thermally grown oxides on p-type 6H–Silicon carbide , 1998 .

[82]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[83]  A. Oshiyama Hole-Injection-Induced Structural Transformation of Oxygen Vacancy in α-Quartz , 1998 .

[84]  L. Ley,et al.  High Resolution Photoemission Study of the 6H-SiC/SiO2 Interface , 1997 .

[85]  Andre Stesmans,et al.  Observation of Carbon Clusters at the 4H-SiC/SiO2 Interface , 1997 .

[86]  Michael Bassler,et al.  “Carbon cluster model” for electronic states at interfaces , 1997 .

[87]  V. Afanas’ev,et al.  Intrinsic SiC/SiO2 Interface States , 1997 .

[88]  H. B. Harrison,et al.  INTERFACIAL CHARACTERISTICS OF N2O AND NO NITRIDED SIO2 GROWN ON SIC BY RAPID THERMAL PROCESSING , 1997 .

[89]  Andre Stesmans,et al.  Interfacial Defects in Si O 2 Revealed by Photon Stimulated Tunneling of Electrons , 1997 .

[90]  Andre Stesmans,et al.  Hole traps in oxide layers thermally grown on SiC , 1996 .

[91]  Max J. Schulz,et al.  Band offsets and electronic structure of SiC/SiO2 interfaces , 1996 .

[92]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[93]  A. Stoneham,et al.  Oxidation of silicon: the VLSI gate dielectric , 1995 .

[94]  J. Halbritter,et al.  ARXPS studies of SiO_2-SiC interfaces and oxidation of 6H SiC single crystal Si-(001) and C-(001) surfaces , 1994 .

[95]  R. E. Tressler,et al.  Oxidation of Single‐Crystal Silicon Carbide Part I . Experimental Studies , 1990 .

[96]  John P. Perdew,et al.  Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities , 1983 .

[97]  R. Street Phonon interactions in the luminescence of amorphous silicon , 1978 .

[98]  R. Street Luminescence in amorphous semiconductors , 1976 .