Research Updates: The three M's (materials, metrology, and modeling) together pave the path to future nanoelectronic technologies

Recent discussions concerning the continuation of Moore's law have focused on announcements by several major corporations to transition from traditional 2D planar to new 3D multi-gate field effect transistor devices. However, the growth and progression of the semiconductor microelectronics industry over the previous 4 decades has been largely driven by combined advances in new materials, lithography, and materials related process technologies. Looking forward, it is therefore anticipated that new materials and materials technologies will continue to play a significant role in both the pursuit of Moore's law and the evolution of the industry. In this research update, we discuss and illustrate some of the required and anticipated materials innovations that could potentially lead to the continuation of Moore's law for another decade (or more). We focus primarily on the innovations needed to achieve single digit nanometer technologies and illustrate how at these dimensions not only new materials but new metro...

[1]  P. Kohl,et al.  All-Copper Chip-to-Substrate Interconnects Part I. Fabrication and Characterization , 2008 .

[2]  Mark S. Lundstrom,et al.  Sub-10 nm carbon nanotube transistor , 2011, 2011 International Electron Devices Meeting.

[3]  Marcelo Rozenberg,et al.  Universal Electric‐Field‐Driven Resistive Transition in Narrow‐Gap Mott Insulators , 2013, Advanced materials.

[4]  Y. Ahn,et al.  Procedure of removing polymer residues and its influences on electronic and structural characteristics of graphene , 2013 .

[5]  R. J. Kline,et al.  Directed Self-Assembly of Lamellar Copolymers: Effects of Interfacial Interactions on Domain Shape. , 2012, ACS macro letters.

[6]  Ying Zhang,et al.  Polymer self assembly in semiconductor microelectronics , 2006, 2006 International Electron Devices Meeting.

[7]  ERIC M. VOGEL,et al.  Technology and metrology of new electronic materials and devices. , 2007, Nature nanotechnology.

[8]  Philippe Ghosez,et al.  Interface Physics in Complex Oxide Heterostructures , 2011 .

[9]  Lai,et al.  Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements. , 1996, Physical review letters.

[10]  Interlevel Dielectric Processes Using PECVD Silicon Nitride, Polyimide, and Polybenzoxazole for GaAs HBT Technology , 2009 .

[11]  G. Tatara,et al.  Theory of current-driven domain wall motion: spin transfer versus momentum transfer. , 2004, Physical review letters.

[12]  Satoshi Sugahara,et al.  Spin-Transistor Electronics: An Overview and Outlook , 2010, Proceedings of the IEEE.

[13]  Kenneth E. Goodson,et al.  Thermal resistance between low-dimensional nanostructures and semi-infinite media , 2008 .

[14]  R. Wise,et al.  Fundamentals of silicon material properties for successful exploitation of strain engineering in modern CMOS manufacturing , 2006, IEEE Transactions on Electron Devices.

[15]  A. Krekhov,et al.  Specific features of defect structure and dynamics in the cylinder phase of block copolymers. , 2008, ACS nano.

[16]  Ashok Kumar,et al.  Optical properties of amorphous high-k LaGdO3 films and its band alignment with Si , 2012 .

[17]  Kinam Kim,et al.  A role for graphene in silicon-based semiconductor devices , 2011, Nature.

[18]  N. Petkov,et al.  Semiconductor Nanowire Fabrication by Bottom-Up and Top-Down Paradigms , 2012 .

[19]  Vladimiro Mujica,et al.  Exploring local currents in molecular junctions. , 2010, Nature chemistry.

[20]  A. Tanaka,et al.  Formulation for XPS spectral change of oxides by ion bombardment as a function of sputtering time , 2004 .

[21]  Ian Appelbaum,et al.  Electronic measurement and control of spin transport in silicon , 2007, Nature.

[22]  J. Miao,et al.  Electron tomography at 2.4-ångström resolution , 2012, Nature.

[23]  Bin Yu,et al.  Synthesis of germanium nanowires on insulator catalyzed by indium or antimony , 2007 .

[24]  K. Hata,et al.  Hierarchical three-dimensional layer-by-layer assembly of carbon nanotube wafers for integrated nanoelectronic devices. , 2012, Nano letters.

[25]  A. Zewail,et al.  4D Lorentz electron microscopy imaging: magnetic domain wall nucleation, reversal, and wave velocity. , 2010, Nano letters.

[26]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[27]  Gerhard Klimeck,et al.  Atomistic Modeling of Realistically Extended Semiconductor Devices with NEMO and OMEN , 2010, Computing in Science & Engineering.

[28]  Helmut Dosch,et al.  Some general aspects of confinement in nanomaterials , 2001 .

[29]  Hugo Bender,et al.  Controlled III/V Nanowire Growth by Selective-Area Vapor-Phase Epitaxy , 2009 .

[30]  Karen Maex,et al.  Low dielectric constant materials for microelectronics , 2003 .

[31]  M. Gubbins,et al.  Whole wafer magnetostriction metrology for magnetic films and multilayers , 2013 .

[32]  Sunyoung Koo,et al.  Comparison study for 3x-nm contact hole CD uniformity between EUV lithography and ArF immersion double patterning , 2012, Advanced Lithography.

[33]  Yu Han,et al.  Atomic Resolution Imaging of Nanoscale Structural Ordering in a Complex Metal Oxide Catalyst , 2012 .

[34]  J. Bokor,et al.  Simulation studies of nanomagnet-based logic architecture. , 2008, Nano letters (Print).

[35]  Peide D. Ye,et al.  Main determinants for III–V metal-oxide-semiconductor field-effect transistors (invited) , 2008 .

[36]  A. Amara,et al.  Tunnel field effect transistor with increased ON current, low-k spacer and high-k dielectric , 2010 .

[37]  B. K. Gupta,et al.  Artificially stacked atomic layers: toward new van der Waals solids. , 2012, Nano letters.

[38]  Mark Ratner,et al.  A brief history of molecular electronics. , 2013, Nature nanotechnology.

[39]  J.E. Brewer,et al.  Emerging research logic devices , 2005, IEEE Circuits and Devices Magazine.

[40]  R. Waser,et al.  Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. , 2012, Nature materials.

[41]  W. Hinsberg,et al.  Block copolymer based nanostructures: materials, processes, and applications to electronics. , 2010, Chemical reviews.

[42]  E. Sánchez,et al.  A simple approach to neutral atom microscopy. , 2011, The Review of scientific instruments.

[43]  K. N. Tu,et al.  Reliability challenges in 3D IC packaging technology , 2011, Microelectron. Reliab..

[44]  E. Vogel,et al.  Issues with characterizing transport properties of graphene field effect transistors , 2012 .

[45]  D. Strukov,et al.  Resistive switching phenomena in thin films: Materials, devices, and applications , 2012 .

[46]  M. Heyns,et al.  Ultimate Scaling of CMOS Logic Devices with Ge and III–V Materials , 2009 .

[47]  Xiaoshuang Chen,et al.  Interface engineering and chemistry of Hf-based high-k dielectrics on III–V substrates , 2013 .

[48]  William D. Hinsberg,et al.  Self-assembly patterning for sub-15nm half-pitch: a transition from lab to fab , 2011, Advanced Lithography.

[49]  R. Farshchi,et al.  Spin injection from Heusler alloys into semiconductors: A materials perspective , 2013 .

[50]  Sean W. King,et al.  Noncontact optical metrologies for Young’s modulus measurements of nanoporous low-k dielectric thin films , 2013 .

[51]  V. Pott,et al.  Design Optimization of Pulsed-Mode Electromechanical Nonvolatile Memory , 2012, IEEE Electron Device Letters.

[52]  Klaus-Jurgen Wolter,et al.  Carbon Nanotube Composites for Electronic Packaging Applications: A Review , 2013 .

[53]  K. Berggren,et al.  A path to ultranarrow patterns using self-assembled lithography. , 2010, Nano letters.

[54]  K. Chesnel,et al.  Mapping spatial and field dependence of magnetic domain memory by soft X-ray speckle metrology. , 2012, Journal of synchrotron radiation.

[55]  Carlos Galup-Montoro,et al.  An MOS transistor model for analog circuit design , 1998, IEEE J. Solid State Circuits.

[56]  E. Sánchez,et al.  Increased resolution in neutral atom microscopy , 2012, Journal of microscopy.

[57]  I. Suni,et al.  Cu planarization for ULSI processing by electrochemical methods: a review , 2005, IEEE Transactions on Semiconductor Manufacturing.

[58]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[59]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[60]  M. Aono,et al.  Multilayer silicene nanoribbons. , 2012, Nano letters.

[61]  W. Gladfelter Selective metalization by chemical vapor deposition , 1993 .

[62]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[63]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[64]  V. Holmberg,et al.  Imaging Impurities in Semiconductor Nanostructures , 2013 .

[65]  D. Herr Directed block copolymer self-assembly for nanoelectronics fabrication , 2011 .

[66]  Geert Vandenberghe,et al.  The need for EUV lithography at advanced technology for sustainable wafer cost , 2013, Advanced Lithography.

[67]  R. Ruiz,et al.  Image quality and pattern transfer in directed self assembly with block-selective atomic layer deposition , 2012 .

[68]  M. Miles,et al.  Error mapping of high-speed AFM systems , 2013 .

[69]  A. Volinsky,et al.  Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation , 2003 .

[70]  Curtis Marcott,et al.  AFM–IR: Combining Atomic Force Microscopy and Infrared Spectroscopy for Nanoscale Chemical Characterization , 2012, Applied spectroscopy.

[71]  Lu Liu,et al.  (Keynote) III-V Compound Semiconductor Field Effect Transistors for Low Power Digital Logic , 2013 .

[72]  C. Boit,et al.  Conduction and material transport phenomena of degradation in electrically stressed ultra low-k dielectric before breakdown , 2012 .

[73]  Emanuele Uccelli,et al.  Mobility and carrier density in p-type GaAs nanowires measured by transmission Raman spectroscopy. , 2012, Nanoscale.

[74]  Lauren R. Olasov,et al.  Thermal conductivity and sound velocity measurements of plasma enhanced chemical vapor deposited a-SiC:H thin films , 2011 .

[75]  Daniel Josell,et al.  Size-Dependent Resistivity in Nanoscale Interconnects , 2009 .

[76]  Iuliana Radu,et al.  The VO2 interface, the metal-insulator transition tunnel junction, and the metal-insulator transition switch On-Off resistance , 2012 .

[77]  Wen-li Wu,et al.  Critical dimension small angle X-ray scattering measurements of FinFET and 3D memory structures , 2013, Advanced Lithography.

[78]  Takayuki Kawahara,et al.  Spin-transfer torque RAM technology: Review and prospect , 2012, Microelectron. Reliab..

[79]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[80]  J. Robertson High dielectric constant gate oxides for metal oxide Si transistors , 2006 .

[81]  Xing Zhang,et al.  Experimental Investigations on Carrier Transport in Si Nanowire Transistors: Ballistic Efficiency and Apparent Mobility , 2008, IEEE Transactions on Electron Devices.

[82]  G. Schmidt,et al.  Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor , 1999, cond-mat/9911014.

[83]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[84]  C. Richter,et al.  Spin transport in memristive devices , 2012 .

[85]  Wenwu Wang,et al.  Effects of rapid thermal annealing on structure and electrical properties of Gd-doped HfO2 high k film , 2011 .

[86]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[87]  Strongly Correlated Materials , 2012, Advanced materials.

[88]  N. Tsutsumi,et al.  Towards nonvolatile memory devices based on ferroelectric polymers , 2012 .

[89]  R Pantel,et al.  Two-dimensional quantitative mapping of arsenic in nanometer-scale silicon devices using STEM EELS-EDX spectroscopy. , 2009, Micron.

[90]  B. V. van Wees,et al.  Spin transport in high-quality suspended graphene devices. , 2012, Nano letters.

[91]  Kelin J. Kuhn Moore's crystal ball: Device physics and technology past the 15nm generation , 2011 .

[92]  T. Jungwirth,et al.  Spin Hall effect devices. , 2012, Nature materials.

[93]  S. Bakaul,et al.  Oxide nanowires for spintronics: materials and devices. , 2012, Nanoscale.

[94]  Hisashi Shima,et al.  Resistive Random Access Memory (ReRAM) Based on Metal Oxides , 2010, Proceedings of the IEEE.

[95]  D. Maroudas,et al.  Mechanical properties of ultralow-dielectric-constant mesoporous amorphous silica structures: Effects of pore morphology and loading mode , 2011 .

[96]  Jing Kong,et al.  Fully Integrated Graphene and Carbon Nanotube Interconnects for Gigahertz High-Speed CMOS Electronics , 2010, IEEE Transactions on Electron Devices.

[97]  Wolfgang Windl,et al.  Stability and exfoliation of germanane: a germanium graphane analogue. , 2013, ACS nano.

[98]  V. Kouznetsova,et al.  Multiscale modeling of residual stresses in isotropic conductive adhesives with nano particles , 2012 .

[99]  D. Leonard,et al.  Four-dimensional STEM-EELS: enabling nano-scale chemical tomography. , 2009, Ultramicroscopy.

[100]  Hidetami Yaegashi,et al.  Extendibility of self-aligned type multiple patterning for further scaling , 2013, Advanced Lithography.

[101]  L. Ricci,et al.  Low-k dielectrics for trench isolation in nanoscaled complementary metal oxide semiconductor imagers , 2009 .

[102]  J. Alamo Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.