Micro-mechanical modelling of mode III fatigue crack growth in rotor steels

A study has been made of fatigue crack propagation in mode III (anti-plane shear) for A469 and A470 commercial rotor steels (tensile strength 621 and 764 MN/m2 respectively) using torsionally-loaded circumferentially-notched cylindrical specimens. For crack growth under both small-and large-scale yielding conditions, radial mode III crack propagation rates are observed to be similar in both steels and to be uniquely related to the plastic intensity range 163-1 per cycle, provided friction, abrasion and interlocking between sliding crack faces is minimized by the application of a small tensile mean load. Over the range studied (i.e., ≈10-6 to 10-1 mm/cycle), mode III growth rates (dc/dN)III are found to be independent of load ratio (for R=−1.0 and −0.5) and to be a power law function of 163-1 or the mode III cyclic crack tip displacement. When compared to mode I crack growth at equivalent cyclic crack tip displacements, however, crack propagation rates in mode III are seen to be two orders of magnitude smaller than in mode I. Based on fractographic evidence of elongated voids, parallel to the crack front, at the tip of the fatigue crack, several models for mode III crack growth are proposed utilizing the concept that mode III crack advance occurs by the initiation and coalescence of voids formed at inclusions directly ahead of the crack tip. By considering the linkage of these voids to take place by mode II shear parallel to the main crack front, expressions for the mode III crack propagation rate are developed based either on considerations of the local mode II crack tip displacementsor the mode II accumulated crack tip strain (computed from the Coffin-Manson damage relationship). Whereas both types of models predict mode III growth rates to be a small fraction of the cyclic crack tip displacements per cycle, the damage accumulation model in particular is found to provide excellent agreement with experimentally measured growth rates in the present rotor steels.RésuméOn a procédé à une étude de la propagation en mode III (cisaillement antiplanaire) des fissures de fatigue dans les aciers commerciaux pour rotors des nuances A 469 (UTS 621 MN/m2) et A 47 à (UTS 764 MN/m2) à l'aide d'éprouvettes cylindriques à entaille circonférentielle soumises à tension.Pour des croissances de fissures demeurant sous les conditions d'écoulement plastique à petite ou à grande échelle, on observe que les vitesses de propagation d'une fissure radiale en mode III sont similaires dans les deux aciers. Si on minimise les frottements, l'abrasion et les couplages mécaniques entre les faces de la fissure en appliquant une légère contrainte de traction, on observe également que ces vitesses sont en seule relation avec l'étendue de la déformation plastique ΔΓ III par cycle. Dans la gamme étudiée (F de 10-6 à 10-1 mm/cycle) on trouve que la vitesse de croissance de la fissure en mode III est indépendante de R (pour R=−1 et −0,5) et est une fonction parabolique de ΔΓ III ou du déplacement d'extrémité de la fissure. Toutefois, si on compare les vitesses de croissance en mode III à celles obtenues en mode I sous les mêmes déplacements d'extrémités de fissure, on constate que les premières sont inférieures aux secondes de deux ordres de grandeur. On propose divers modèles pour la croissance de fissure en mode III, en se basant sur l'observation fractographique de la présence de lacunes allongées parallèles sur front de fissuration.Ces modèles recourent au concept de préfissuration par coalescences des lacunes formées sur des inclusions en amont de la fissure. En considérant que ces lacunes se réunissent par un cisaillement de mode II parallèle au front de fissuration principale, on a développé des expressions pour la vitesse de propagation suivant le mode III, qui reposent soit sur les déplacements locaux de l'extrémité de la fissure suivant un mode II, soit sur la déformation de mode II accumulée à l'extrémité de la fissure et calculée par la relation de dommages cumulés de Coffin-Manson.Si les deux types de modèle prédisent que les taux de croissance selon le mode II ne sont qu'une faible fraction des déplacements par cycle, le modèle recourant au concept de dommages cummulés se montre quant à lui en excellent accord avec les vitesses de propagation mesurées expérimentalement sur lesdits aciers pour rotors.

[1]  F. A. McCzintock,et al.  On the plastic zone in circumferentially grooved shafts at high torques , 1984 .

[2]  D.A. Hodges,et al.  Results of subsynchronous resonance test at Mohave , 1975, IEEE Transactions on Power Apparatus and Systems.

[3]  A. C. Mackenzie,et al.  Elastic-plastic torsion of a circumferentially notched bar , 1959 .

[4]  Johannes Weertman,et al.  Rate of growth of fatigue cracks calculated from the theory of infinitesimal dislocations distributed on a plane , 1966 .

[5]  R. W. Lardner,et al.  A dislocation model for fatigue crack growth in metals , 1968 .

[6]  R. Ritchie,et al.  ON THE CALIBRATION, OPTIMIZATION AND USE OF d.c. ELECTRICAL POTENTIAL METHODS FOR MONITORING MODE III CRACK GROWTH IN TORSIONALLY‐LOADED SAMPLES , 1982 .

[7]  F. A. McClintock,et al.  Mode III fatigue crack propagation in low alloy steel , 1982 .

[8]  R.D. Dunlop,et al.  Turbine-Generator Shaft Torques and Fatigue: Part I - Simulation Methods and Fatigue Analysis , 1979, IEEE Transactions on Power Apparatus and Systems.

[9]  R. Ritchie,et al.  On the influence of rubbing fracture surfaces on fatigue crack propagation in mode III , 1983 .

[10]  F. A. McClintock,et al.  Effects of friction and high torque on fatigue crack propagation in Mode III , 1982 .

[11]  V. A. Tipnis,et al.  The Influence of Stress-State and Inclusion Content on Ductile Fracture With Rotation , 1967 .

[12]  Pr Abelkis,et al.  Design of fatigue and fracture resistant structures , 1982 .