New Proximal Bundle Method for Non- smooth DC Optimization

In this paper, we develop a version of the bundle method to locally solve unconstrained difference of convex (DC) programming problems. It is assumed that a DC representation of the objective function is available. Our main idea is to use subgradients of both the first and second components in the DC representation. This subgradient information is gathered from some neighborhood of the current iteration point and it is used to build separately an approximation for each component in the DC representation. By combining these approximations we obtain the so-called nonconvex cutting plane model of the original objective function. We design the proximal bundle method for DC programming based on this approach and prove the convergence of the method to an e-critical point. This algorithm is tested using some academic test problems.

[1]  T. P. Dinh,et al.  Convex analysis approach to d.c. programming: Theory, Algorithm and Applications , 1997 .

[2]  Jochem Zowe,et al.  A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results , 1992, SIAM J. Optim..

[3]  Adil M. Bagirov,et al.  Comparing different nonsmooth minimization methods and software , 2012, Optim. Methods Softw..

[4]  V. F. Demʹi︠a︡nov,et al.  Constructive nonsmooth analysis , 1995 .

[5]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[6]  Alberto Ferrer Biosca,et al.  Representation of a Polynomial Function as a Difference of Convex Polynomials, with an Application , 2001 .

[7]  Pierre Hansen,et al.  Solution of the Multisource Weber and Conditional Weber Problems by D.-C. Programming , 1992, Oper. Res..

[8]  L. Luksan,et al.  Variable metric methods for unconstrainted optimization and nonlinear least squares , 2000 .

[9]  Krzysztof C. Kiwiel,et al.  An aggregate subgradient method for nonsmooth convex minimization , 1983, Math. Program..

[10]  Adil M. Bagirov,et al.  Codifferential method for minimizing nonsmooth DC functions , 2011, J. Glob. Optim..

[11]  H. Tuy Convex analysis and global optimization , 1998 .

[12]  Adil M. Bagirov,et al.  A quasisecant method for minimizing nonsmooth functions , 2010, Optim. Methods Softw..

[13]  Antonio Fuduli,et al.  Minimizing Nonconvex Nonsmooth Functions via Cutting Planes and Proximity Control , 2003, SIAM J. Optim..

[14]  J. Toland Duality in nonconvex optimization , 1978 .

[15]  R. Horst,et al.  DC Programming: Overview , 1999 .

[16]  J. Hiriart-Urruty Generalized Differentiability / Duality and Optimization for Problems Dealing with Differences of Convex Functions , 1985 .

[17]  P. Hartman On functions representable as a difference of convex functions , 1959 .

[18]  K. Kiwiel Methods of Descent for Nondifferentiable Optimization , 1985 .

[19]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[20]  Wen-yuSun,et al.  PROXIMAL POINT ALGORITHM FOR MINIMIZATION OF DC FUNCTION , 2003 .

[21]  Le Thi Hoai An,et al.  The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems , 2005, Ann. Oper. Res..

[22]  Le Thi Hoai An,et al.  Solving a Class of Linearly Constrained Indefinite Quadratic Problems by D.C. Algorithms , 1997, J. Glob. Optim..

[23]  Adil M. Bagirov,et al.  Introduction to Nonsmooth Optimization: Theory, Practice and Software , 2014 .

[24]  Antonio Fuduli,et al.  A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization , 2004, Optim. Methods Softw..

[25]  Krzysztof C. Kiwiel,et al.  Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..

[26]  Adil M. Bagirov,et al.  A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems , 2006, Eur. J. Oper. Res..

[27]  Kaj Holmberg,et al.  A production-transportation problem with stochastic demand and concave production costs , 1999, Math. Program..

[28]  E. A. Nurminski,et al.  A splitting bundle approach for non-smooth non-convex minimization , 2015 .

[29]  Ladislav Luksan,et al.  Dual method for solving a special problem of quadratic programming as a subproblem at linearly constrained nonlinear minimax approximation , 1984, Kybernetika.

[30]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[31]  Adil M. Bagirov,et al.  A Method for Minimization of Quasidifferentiable Functions , 2002, Optim. Methods Softw..

[32]  Adil M. Bagirov,et al.  A method of truncated codifferential with application to some problems of cluster analysis , 2002, J. Glob. Optim..

[33]  J. Toland On sub-differential calculus and duality in non-convex optimisation , 1979 .

[34]  J.-B. Hiriart-Urruty,et al.  From Convex Optimization to Nonconvex Optimization. Necessary and Sufficient Conditions for Global Optimality , 1989 .

[35]  Le Thi Hoai An,et al.  Exact penalty and error bounds in DC programming , 2012, J. Glob. Optim..

[36]  A. Bihain Optimization of upper semidifferentiable functions , 1984 .

[37]  Marko Mäkelä,et al.  Survey of Bundle Methods for Nonsmooth Optimization , 2002, Optim. Methods Softw..