暂无分享,去创建一个
[1] Mitsuhiro Okada,et al. A direct independence proof of Buchholz's Hydra Game on finite labeled trees , 1998, Arch. Math. Log..
[2] G. Takeuti,et al. On the theory of quasi-ordinal diagrams , 1985 .
[3] Jean-Pierre Jouannaud,et al. Inductive-data-type systems , 2002, Theor. Comput. Sci..
[4] Wilfried Buchholz,et al. An independence result for (II11-CA)+BI , 1987, Ann. Pure Appl. Log..
[5] Nachum Dershowitz,et al. Termination of Rewriting , 1987, J. Symb. Comput..
[6] Akiko Kino,et al. On ordinal diagrams , 1961 .
[7] Jean-Pierre Jouannaud,et al. A computation model for executable higher-order algebraic specification languages , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.
[8] Jean-Pierre Jouannaud,et al. Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[9] Ariya Isihara. Hydra Games and Tree Ordinals , 2007, WoLLIC.
[10] Frédéric Blanqui,et al. Corrigendum to "Inductive-data-type systems" [Theoret. Comput. Sci. 272 (1-2) (2002) 41-68] , 2020, Theor. Comput. Sci..
[11] Nachum Dershowitz,et al. Gap Embedding for Well-Quasi-Orderings , 2003, WoLLIC.
[12] Mitsuhiro Okada,et al. Note on a Proof of the Extended Kirby - Paris Theorem on Labeled Finite Trees , 1988, Eur. J. Comb..
[13] Mitsuhiro Okada. A Simple Relationship between Buchholz's New System of Ordinal Notations and Takeuti's System of Ordinal Diagrams , 1987, J. Symb. Log..