On Quasi Ordinal Diagram Systems

The purposes of this note are the following two; we first generalize Okada-Takeuti's well quasi ordinal diagram theory, utilizing the recent result of Dershowitz-Tzameret's version of tree embedding theorem with gap conditions. Second, we discuss possible use of such strong ordinal notation systems for the purpose of a typical traditional termination proof method for term rewriting systems, especially for second-order (pattern-matching-based) rewriting systems including a rewrite-theoretic version of Buchholz's hydra game.

[1]  Mitsuhiro Okada,et al.  A direct independence proof of Buchholz's Hydra Game on finite labeled trees , 1998, Arch. Math. Log..

[2]  G. Takeuti,et al.  On the theory of quasi-ordinal diagrams , 1985 .

[3]  Jean-Pierre Jouannaud,et al.  Inductive-data-type systems , 2002, Theor. Comput. Sci..

[4]  Wilfried Buchholz,et al.  An independence result for (II11-CA)+BI , 1987, Ann. Pure Appl. Log..

[5]  Nachum Dershowitz,et al.  Termination of Rewriting , 1987, J. Symb. Comput..

[6]  Akiko Kino,et al.  On ordinal diagrams , 1961 .

[7]  Jean-Pierre Jouannaud,et al.  A computation model for executable higher-order algebraic specification languages , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[8]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[9]  Ariya Isihara Hydra Games and Tree Ordinals , 2007, WoLLIC.

[10]  Frédéric Blanqui,et al.  Corrigendum to "Inductive-data-type systems" [Theoret. Comput. Sci. 272 (1-2) (2002) 41-68] , 2020, Theor. Comput. Sci..

[11]  Nachum Dershowitz,et al.  Gap Embedding for Well-Quasi-Orderings , 2003, WoLLIC.

[12]  Mitsuhiro Okada,et al.  Note on a Proof of the Extended Kirby - Paris Theorem on Labeled Finite Trees , 1988, Eur. J. Comb..

[13]  Mitsuhiro Okada A Simple Relationship between Buchholz's New System of Ordinal Notations and Takeuti's System of Ordinal Diagrams , 1987, J. Symb. Log..