Local models and large scale statistics of the kuramoto-sivashinsky equation

Abstract We investigate the ability of local models of the one space dimensional Kuramoto-Sivashinsky (KS) equation, obtained either from ‘local’ wavelet projections or by projection on a small set of Fourier modes supported on a short subinterval, to reproduce coherent events typical of solutions of the same equation on a much longer interval. We also show that an effective equation preserving the statistics of the large scales of the KS equation can be obtained from a coarse-graining procedure based on the wavelet decomposition of the KS equation.

[1]  John Guckenheimer,et al.  Kuramoto-Sivashinsky dynamics on the center-unstable manifold , 1989 .

[2]  G. Vahala,et al.  Reformulation of recursive-renormalization-group-based subgrid modeling of turbulence. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  I. Kevrekidis,et al.  Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations , 1990 .

[4]  Gal Berkooz,et al.  Turbulence, Coherent Structures, and Low-Dimensional Models. , 1991 .

[5]  Jayaprakash,et al.  Long-wavelength properties of the Kuramoto-Sivashinsky equation. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Thomas B. Gatski,et al.  Studies in turbulence , 1992 .

[7]  R. K. Joshi,et al.  Thermal diffusion factors for krypton and xenon , 1963 .

[8]  Holmes,et al.  Large-scale statistics of the Kuramoto-Sivashinsky equation: A wavelet-based approach. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  Large-scale properties of unstable systems governed by the Kuramoto-Sivashinksi equation , 1981 .

[10]  P. Moin,et al.  The minimal flow unit in near-wall turbulence , 1991, Journal of Fluid Mechanics.

[11]  Riley,et al.  Analysis of subgrid-scale eddy viscosity with use of results from direct numerical simulations. , 1987, Physical review letters.

[12]  Stéphane Zaleski,et al.  A stochastic model for the large scale dynamics of some fluctuating interfaces , 1989 .

[13]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986, Physical review letters.

[14]  S. Leibovich Structural Genesis in Wall-Bounded Turbulent Flows , 1992 .

[15]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[16]  Defect-mediated stability: an effective hydrodynamic theory of spatiotemporal chaos , 1994, cond-mat/9412041.

[17]  P. Moin,et al.  Probing turbulence via large eddy simulation , 1984 .

[18]  Krug,et al.  Dynamic scaling and crossover analysis for the Kuramoto-Sivashinsky equation. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[19]  I. Kevrekidis,et al.  Back in the saddle again: a computer assisted study of the Kuramoto-Sivashinsky equation , 1990 .

[20]  I. Procaccia,et al.  Proof of scale invariant solutions in the Kardar−Parisi−Zhang and Kuramoto-Sivashinsky equations in 1+1 dimensions: analytical and numerical results , 1993 .

[21]  G. Sivashinsky Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations , 1977 .

[22]  P. Holmes,et al.  Wavelet projections of the Kuramoto-Sivashinsky equation I. heteroclinic cycles and modulated traveling waves for short systems , 1995 .

[23]  A. Kelley The stable, center-stable, center, center-unstable, unstable manifolds , 1967 .

[24]  Procaccia,et al.  Comparison of the scale invariant solutions of the Kuramoto-Sivashinsky and Kardar-Parisi-Zhang equations in d dimensions. , 1992, Physical review letters.

[25]  Theoretical Study of a Chemical Turbulence , 1977 .

[26]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[27]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986 .

[28]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[29]  Gal Berkooz,et al.  Coherent structures in random media and wavelets , 1992 .

[30]  Gal Berkooz,et al.  Intermittent dynamics in simple models of the turbulent wall layer , 1991, Journal of Fluid Mechanics.

[31]  Harry Dankowicz,et al.  Local models of spatio-temporally complex fields , 1996 .

[32]  J. Lumley Stochastic tools in turbulence , 1970 .

[33]  Yoshiki Kuramoto,et al.  Diffusion-Induced Chaos in Reaction Systems , 1978 .

[34]  S. K. Robinson,et al.  Coherent Motions in the Turbulent Boundary Layer , 1991 .

[35]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[36]  Stéphane Zaleski,et al.  Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces , 1986 .