A Poisson * Negative Binomial Convolution Law for Random Polynomials over Finite Fields

Let Fq[X] denote a polynomial ring over a finite field Fq with q elements. Let Pn be the set of monic polynomials over Fq of degree n. Assuming that each of the q possible monic polynomials in Pn is equally likely, we give a complete characterization of the limiting behavior of P(Ωn = m) as n→∞ by a uniform asymptotic formula valid for m ≥ 1 and n−m→∞, where Ωn represents the number (multiplicities counted) of irreducible factors in the factorization of a random polynomial in Pn. The distribution of Ωn is essentially the convolution of a Poisson distribution with mean log n and a negative binomial distribution with parameters q and q−1. Such a convolution law exhibits three modes of asymptotic behaviors: when m is small, it behaves like a Poisson distribution; when m becomes large, its behavior is dominated by a negative binomial distribution, the transitional behavior being essentially a parabolic cylinder function (or some linear combinations of the standard normal law and its iterated integrals). As applications of this uniform asymptotic formula, we derive most known results concerning P(Ωn = m) and present many new ones like the unimodality of the distribution. The methods used are widely applicable to other problems on multiset constructions. An extension to Rényi’s problem, concerning the distribution of the difference of the (total) number of irreducibles and the number of distinct irreducibles, is also presented. AMS 1991 Mathematics subject classification: Primary 11T06; secondary 60C05.

[1]  Richard Stong,et al.  Some asymptotic results on finite vector spaces , 1988 .

[2]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[3]  Philippe Flajolet,et al.  Gaussian limiting distributions for the number of components in combinatorial structures , 1990, J. Comb. Theory, Ser. A.

[4]  Atle Selberg Note on a Paper By L. G. Sathe , 1954 .

[5]  "Factorisatio numerorum" in arithmetical semigroups , 1992 .

[6]  Jennie C. Hansen,et al.  How random is the characteristic polynomial of a random matrix , 1993 .

[7]  Hsien-Kuei Hwang,et al.  Théorèmes limites pour les structures combinatoires et les fonctions arithmétiques , 1994 .

[8]  N. Temme Uniform asymptotic expansions of confluent hypergeometric functions , 1978 .

[9]  Stephen D. Cohen Further Arithmetical Functions in Finite Fields , 1969 .

[10]  J. Wu Sur un problème de Rényi , 1994 .

[11]  G. Tenenbaum,et al.  On the number of prime factors of an integer , 1988 .

[12]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .

[13]  On a problem of A. Rényi , 1991 .

[14]  R. Warlimont Arithmetical semigroups IV: Selberg's analysis , 1993 .

[15]  Gérald Tenenbaum,et al.  Introduction à la théorie analytique et probabiliste des nombres , 1990 .

[16]  Boris Pittel,et al.  On a Likely Shape of the Random Ferrers Diagram , 1997 .

[17]  D. Jungnickel Finite fields : structure and arithmetics , 1993 .

[18]  Jennie C. Hansen,et al.  Order Statistics for Decomposable Combinatorial Structures , 1994, Random Struct. Algorithms.

[19]  Simon Tavare,et al.  Independent Process Approximations for Random Combinatorial Structures , 1994, 1308.3279.

[21]  Carl Friedrich Gauss,et al.  Untersuchungen über höhere Arithmetik , 1965 .

[22]  Hsien-Kuei Hwang Distribution of integer partitions with large number of summands , 1997 .

[23]  Jennie C. Hansen Factorization in Fq(x) and Brownian Motion , 1993, Comb. Probab. Comput..

[24]  Andrew D. Barbour,et al.  On random polynomials over finite fields , 1993, Mathematical Proceedings of the Cambridge Philosophical Society.

[25]  Roderick Wong,et al.  Asymptotic approximations of integrals , 1989, Classics in applied mathematics.

[26]  S. D. Cohen COMPUTATIONAL AND ALGORITHMIC PROBLEMS IN FINITE FIELDS , 1994 .

[27]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[28]  N. Bleistein,et al.  Asymptotic Expansions of Integrals , 1975 .

[29]  Zhicheng Gao,et al.  Central and local limit theorems applied to asymptotic enumeration IV: multivariate generating functions , 1992 .

[30]  Norman Bleistein,et al.  Uniform asymptotic expansions of integrals with stationary point near algebraic singularity , 1966 .

[31]  Boris G. Pittel,et al.  Components of Random Forests , 1992, Combinatorics, Probability and Computing.

[32]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[33]  E. Rodney Canfield,et al.  Central and Local Limit Theorems for the Coefficients of Polynomials of Binomial Type , 1977, J. Comb. Theory, Ser. A.