New constructions of MDS symbol-pair codes

Motivated by the application of high-density data storage technologies, symbol-pair codes are proposed to protect against pair-errors in symbol-pair channels, whose outputs are overlapping pairs of symbols. The research of symbol-pair codes with the largest minimum pair-distance is interesting since such codes have the best possible error-correcting capability. A symbol-pair code attaining the maximal minimum pair-distance is called a maximum distance separable (MDS) symbol-pair code. In this paper, we focus on constructing linear MDS symbol-pair codes over the finite field $${\mathbb {F}}_{q}$$Fq. We show that a linear MDS symbol-pair code over $${\mathbb {F}}_{q}$$Fq with pair-distance 5 exists if and only if the length n ranges from 5 to $$q^2+q+1$$q2+q+1. As for codes with pair-distance 6, length ranging from $$q+2$$q+2 to $$q^{2}$$q2, we construct linear MDS symbol-pair codes by using a configuration called ovoid in projective geometry. With the help of elliptic curves, we present a construction of linear MDS symbol-pair codes for any pair-distance $$d+2$$d+2 with length n satisfying $$7\le d+2\le n\le q+\lfloor 2\sqrt{q}\rfloor +\delta (q)-3$$7≤d+2≤n≤q+⌊2q⌋+δ(q)-3, where $$\delta (q)=0$$δ(q)=0 or 1.

[1]  Paul H. Siegel,et al.  Constructions and Decoding of Cyclic Codes Over $b$ -Symbol Read Channels , 2016, IEEE Transactions on Information Theory.

[2]  Antonio Cossidente,et al.  Curves in Projective Spaces and Almost MDS Codes , 2001, Des. Codes Cryptogr..

[3]  Mario Blaum,et al.  Codes for Symbol-Pair Read Channels , 2010, IEEE Transactions on Information Theory.

[4]  M. Deuring Die Typen der Multiplikatorenringe elliptischer Funktionenkörper , 1941 .

[5]  Carlos Munuera On the main conjecture on geometric MDS codes , 1992, IEEE Trans. Inf. Theory.

[6]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[7]  Joseph H. Silverman,et al.  The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.

[8]  Paul H. Siegel,et al.  Decoding of cyclic codes over symbol-pair read channels , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[9]  P. Hall On Representatives of Subsets , 1935 .

[10]  Mario A. de Boer,et al.  Almost MDS codes , 1996, Des. Codes Cryptogr..

[11]  Yeow Meng Chee,et al.  Maximum Distance Separable Codes for Symbol-Pair Read Channels , 2012, IEEE Transactions on Information Theory.

[12]  J. Thas,et al.  Finite Generalized Quadrangles , 2009 .

[13]  Shixin Zhu,et al.  A Construction of New MDS Symbol-Pair Codes , 2015, IEEE Transactions on Information Theory.

[14]  Qi Cheng,et al.  Hard Problems of Algebraic Geometry Codes , 2005, IEEE Transactions on Information Theory.

[15]  Simon Litsyn,et al.  Symbol-pair codes: Algebraic constructions and asymptotic bounds , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[16]  Fang-Wei Fu,et al.  Stopping Sets of Algebraic Geometry Codes , 2014, IEEE Transactions on Information Theory.

[17]  Daqing Wan,et al.  On the minimum distance of elliptic curve codes , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[18]  Hao Chen,et al.  On the main conjecture of geometric MDS codes , 1994 .