Time-Space Lower Bounds for the Polynomial-Time Hierarchy on Randomized Machines

We establish the first polynomial-strength time-space lower bounds for problems in the linear-time hierarchy on randomized machines with bounded two-sided error. We show that for any integer l > 1 and constant c < l, there exists a positive constant d such that QSATl cannot be computed by such machines in time nc and space nd, where QSATl denotes the problem of deciding the validity of a Boolean first-order formula with at most l–1 quantifier alternations. Corresponding to l = 1, we prove that for any constant c < φ ≈ 1.618, there exists a positive constant d such that the set of Boolean tautologies cannot be decided by a randomized machine with one-sided error in time nc and space nd.

[1]  Clemens Lautemann,et al.  BPP and the Polynomial Hierarchy , 1983, Inf. Process. Lett..

[2]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[3]  Eric Allender,et al.  Time-space tradeoffs in the counting hierarchy , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[4]  Noam Nisan,et al.  RL⊆SC , 1992, STOC '92.

[5]  Lance Fortnow,et al.  Time-space tradeoffs for nondeterministic computation , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[6]  Ryan Williams Better time-space lower bounds for SAT and related problems , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[7]  Zvi Galil,et al.  Explicit Constructions of Linear-Sized Superconcentrators , 1981, J. Comput. Syst. Sci..

[8]  B. E. Eckbo,et al.  Appendix , 1826, Epilepsy Research.

[9]  Michael E. Saks,et al.  Time-space trade-off lower bounds for randomized computation of decision problems , 2003, JACM.

[10]  José L. Balcázar,et al.  Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.

[11]  J. H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[12]  Noam Nisan,et al.  On read-once vs. multiple access to randomness in logspace , 1990, Proceedings Fifth Annual Structure in Complexity Theory Conference.

[13]  Lance Fortnow,et al.  Time-Space Tradeoffs for Satisfiability , 2000, J. Comput. Syst. Sci..

[14]  Dieter van Melkebeek,et al.  Time-Space Lower Bounds for the Polynomial-Time Hierarchy on Randomized Machines , 2006, SIAM J. Comput..

[15]  Noam Nisan Rl <= Sc , 1994, Comput. Complex..

[16]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[17]  Russell Impagliazzo,et al.  How to recycle random bits , 1989, 30th Annual Symposium on Foundations of Computer Science.

[18]  Ravi Kannan Towards separating nondeterminism from determinism , 2005, Mathematical systems theory.

[19]  Richard Edwin Stearns,et al.  Two-Tape Simulation of Multitape Turing Machines , 1966, JACM.

[20]  Stephen A. Cook,et al.  Short Propositional Formulas Represent Nondeterministic Computations , 1988, Inf. Process. Lett..

[21]  Avi Wigderson,et al.  Dispersers, deterministic amplification, and weak random sources , 1989, 30th Annual Symposium on Foundations of Computer Science.

[22]  Richard J. Lipton,et al.  On the complexity of SAT , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[23]  Emanuele Viola,et al.  On Probabilistic Time versus Alternating Time , 2005, Complexity of Boolean Functions.

[24]  BeamePaul,et al.  Time-space trade-off lower bounds for randomized computation of decision problems , 2003 .

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  Noam Nisan,et al.  Pseudorandom generators for space-bounded computation , 1992, Comb..

[27]  D. Melkebeek TIME-SPACE LOWER BOUNDS FOR NP-COMPLETE PROBLEMS , 2004 .