Dielectric permittivity of ultrathin PbTiO3 nanowires from first principles

We propose an efficient method to compute the dielectric permittivity of nanostructures by combining first principles density functional perturbation theory with effective medium theory. Specifically, ultrathin axially symmetric ferroelectric PbTiO3 nanowires are considered. As established previously by Pilania and Ramprasad (Phys Rev B 82:155442, 2010), (4 × 4) PbO-terminated nanowire and (4 × 4) TiO2-terminated nanowire display, respectively, a uniform axial and a vortex polarization in their ground state configurations (the latter with a non-zero axial toroidal moment). Both nanowires, regardless of the lateral surface termination, display a significantly larger dielectric constant value along the axial direction, and diminished values along the off-axis directions, as compared to the corresponding bulk values. Our results further suggest that the nanowires with unconventional vortex-type polarization states are expected to have an increased dielectric response as compared to those with conventional uniform axial polarization. The method proposed here is quite general and readily extendable to other zero-, one-, and two-dimensional nanostructures.

[1]  Polymer thin-film transistors with high dielectric constant gate insulators , 2003 .

[2]  J. P. Remeika,et al.  Classical behavior of the index of refraction in two ferroelectrics in the high-temperature phase , 1982 .

[3]  Charles Kittel,et al.  Theory of the structure of ferromagnetic domains in films and small particles , 1946 .

[4]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[5]  Jean-Marc Triscone,et al.  Physics of ferroelectrics : a modern perspective , 2007 .

[6]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[7]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[8]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[9]  J. P. Remeika,et al.  Nonlinear Optical Properties of Ferroelectric Lead Titanate , 1972 .

[10]  V. Ginzburg,et al.  On the problem of superdiamagnetism , 1984 .

[11]  G. Pilania,et al.  Ab initio study of ferroelectricity in BaTiO 3 nanowires , 2009 .

[12]  Haisheng Xu,et al.  High-dielectric-constant ceramic-powder polymer composites , 2000 .

[13]  M. Fontana,et al.  Raman spectrum in PbTiO3 re-examined: dynamics of the soft phonon and the central peak , 1991 .

[14]  Laurent Bellaiche,et al.  Characteristics and signatures of dipole vortices in ferroelectric nanodots : First-principles-based simulations and analytical expressions , 2007 .

[15]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[16]  D. Fong,et al.  Imaging and alignment of nanoscale 180° stripe domains in ferroelectric thin films , 2008 .

[17]  David Vanderbilt,et al.  Enhancement of ferroelectricity at metal-oxide interfaces. , 2008, Nature materials.

[18]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[19]  Grimsditch,et al.  Anharmonicity of the lowest-frequency A1(TO) phonon in PbTiO3. , 1993, Physical review. B, Condensed matter.

[20]  J. Osborn Demagnetizing Factors of the General Ellipsoid , 1945 .

[21]  T. Kitamura,et al.  Coexistence of rectilinear and vortex polarizations at twist boundaries in ferroelectric PbTiO_{3} from first principles , 2011 .

[22]  Denis Remiens,et al.  Low driving voltages and memory effect in organic thin-film transistors with a ferroelectric gate insulator , 2001 .

[23]  T. C. Choy Effective medium theory : principles and applications , 1999 .

[24]  R. Ramprasad,et al.  Dielectric properties of ultrathin SiO2 slabs , 2005 .

[25]  J. Scott,et al.  Ferroelectric memories , 1997, Science.

[26]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[27]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[28]  Raoul Schroeder,et al.  High‐Performance Organic Transistors Using Solution‐Processed Nanoparticle‐Filled High‐k Polymer Gate Insulators , 2005 .

[29]  L. Bellaiche,et al.  Ferroelectricity in barium titanate quantum dots and wires. , 2003, Physical review letters.

[30]  Atomic-scale dielectric permittivity profiles in slabs and multilayers , 2006 .

[31]  I. Ponomareva,et al.  Modelling of nanoscale ferroelectrics from atomistic simulations , 2005 .

[32]  G. Pilania,et al.  Complex polarization ordering in PbTi03 nanowires: A first-principles computational study , 2010 .

[33]  Stoner EdmundC.,et al.  XCVII. The demagnetizing factors for ellipsoids , 1945 .

[34]  K. Rabe Theoretical investigations of epitaxial strain effects in ferroelectric oxide thin films and superlattices , 2005 .

[35]  A. M. Glass,et al.  Principles and Applications of Ferroelectrics and Related Materials , 1977 .

[36]  Comparing the weighted density approximation with the LDA and GGA for ground-state properties of ferroelectric perovskites , 2004, cond-mat/0406092.

[37]  Peter J. Hotchkiss,et al.  Phosphonic Acid‐Modified Barium Titanate Polymer Nanocomposites with High Permittivity and Dielectric Strength , 2007 .

[38]  LATTICE DYNAMICS OF BATIO3, PBTIO3, AND PBZRO3 : A COMPARATIVE FIRST-PRINCIPLES STUDY , 1999, cond-mat/9901246.

[39]  L. Bellaiche,et al.  Unusual phase transitions in ferroelectric nanodisks and nanorods , 2004, Nature.

[40]  Ab initio theory of metal-insulator interfaces in a finite electric field , 2005, cond-mat/0511042.

[41]  Rampi Ramprasad,et al.  Dielectric properties of nanoscale Hf O 2 slabs , 2005 .

[42]  M. Alexe,et al.  Vortex ferroelectric domains , 2008 .

[43]  K. Natori,et al.  Dielectric properties of hydrogen-terminated Si(111) ultrathin films , 2006 .

[44]  James F. Scott,et al.  The Physics of Ferroelectric Memories , 1998 .

[45]  B. S. Kang,et al.  Lanthanum-substituted bismuth titanate for use in non-volatile memories , 1999, Nature.

[46]  First-principles calculations of the dielectric properties of silicon nanostructures , 2008 .

[47]  T. Kitamura,et al.  Ab initio study of ferroelectric closure domains in ultrathin PbTiO_{3} films , 2010 .

[48]  Schaefer,et al.  Crystal optical studies of precursor and spontaneous polarization in PbTiO3. , 1986, Physical review. B, Condensed matter.

[49]  J. Junquera,et al.  Ferromagneticlike closure domains in ferroelectric ultrathin films: first-principles simulations. , 2008, Physical review letters.

[50]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[51]  R. Nelmes,et al.  The crystal structure of tetragonal PbTiO3 at room temperature and at 700 K , 1985 .

[52]  X. Gonze,et al.  Polarization vortices in germanium telluride nanoplatelets: a theoretical study. , 2009, Physical review letters.

[53]  T. Ma,et al.  SrBi2Ta2O9 memory capacitor on Si with a silicon nitride buffer , 1998 .

[54]  J. Nakamura,et al.  Dielectric discontinuity at structural boundaries in Si , 2006 .

[55]  K. Younsi,et al.  The future of nanodielectrics in the electrical power industry , 2004, IEEE Transactions on Dielectrics and Electrical Insulation.

[56]  Rafal E Dunin-Borkowski,et al.  Direct imaging of nanoscale magnetic interactions in minerals , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[57]  M. Nardelli,et al.  First-principles investigations of the dielectric properties of polypropylene/metal-oxide interfaces , 2009 .

[58]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[59]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[60]  J. Junquera,et al.  Critical thickness for ferroelectricity in perovskite ultrathin films , 2003, Nature.

[61]  F. Giustino,et al.  Theory of atomic-scale dielectric permittivity at insulator interfaces , 2005 .