In vivo imaging of the human cornea with high-speed and high-resolution Fourier-domain full-field optical coherence tomography.

Corneal evaluation in ophthalmology necessitates cellular-resolution and fast imaging techniques that allow for accurate diagnoses. Currently, the fastest volumetric imaging technique is Fourier-domain full-field optical coherence tomography (FD-FF-OCT), which uses a fast camera and a rapidly tunable laser source. Here, we demonstrate high-resolution, high-speed, non-contact corneal volumetric imaging in vivo with FD-FF-OCT that can acquire a single 3D volume with a voxel rate of 7.8 GHz. The spatial coherence of the laser source was suppressed to prevent it from focusing on a spot on the retina, and therefore, exceeding the maximum permissible exposure (MPE). The inherently volumetric nature of FD-FF-OCT data enabled flattening of curved corneal layers. The acquired FD-FF-OCT images revealed corneal cellular structures, such as epithelium, stroma and endothelium, as well as subbasal and mid-stromal nerves.

[1]  Jerome Mertz,et al.  In vivo corneal and lenticular microscopy with asymmetric fundus retroillumination , 2020, bioRxiv.

[2]  Angelika Unterhuber,et al.  Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography. , 2013, Investigative ophthalmology & visual science.

[3]  G. Hüttmann,et al.  In vivo optical imaging of physiological responses to photostimulation in human photoreceptors , 2016, Proceedings of the National Academy of Sciences.

[4]  Brenda J Butka Imaging , 2003, JAMA.

[5]  Wolfgang Drexler,et al.  Numerical focusing methods for full field OCT: a comparison based on a common signal model. , 2014, Optics express.

[6]  Brett E. Bouma,et al.  Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications , 2012, Biomedical optics express.

[7]  Kostadinka Bizheva,et al.  Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas. , 2017, Biomedical optics express.

[8]  M. Fink,et al.  In vivo high resolution human corneal imaging using full-field optical coherence tomography. , 2018, Biomedical optics express.

[9]  Krzysztof J. Cios,et al.  Computational intelligence in solving bioinformatics problems , 2005, Artif. Intell. Medicine.

[10]  Gesa Franke,et al.  Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography. , 2015, Optics letters.

[11]  Mathias Fink,et al.  From supersonic shear wave imaging to full-field optical coherence shear wave elastography , 2013, Journal of biomedical optics.

[12]  W M Petroll,et al.  Clinical and diagnostic use of in vivo confocal microscopy in patients with corneal disease. , 1993, Ophthalmology.

[13]  Geunyoung Yoon,et al.  Micrometer axial resolution OCT for corneal imaging , 2011, Biomedical optics express.

[14]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[15]  H D Cavanagh,et al.  Confocal microscopy of the living eye. , 1990, The CLAO journal : official publication of the Contact Lens Association of Ophthalmologists, Inc.

[16]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[17]  Egidijus Auksorius,et al.  Fast subsurface fingerprint imaging with full-field optical coherence tomography system equipped with a silicon camera , 2017, Journal of biomedical optics.

[18]  Linbo Liu,et al.  Visualizing Micro-anatomical Structures of the Posterior Cornea with Micro-optical Coherence Tomography , 2017, Scientific Reports.

[19]  Peter Koch,et al.  In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s. , 2010, Optics letters.

[20]  P. Gain,et al.  3D map of the human corneal endothelial cell , 2016, Scientific Reports.

[21]  A. Boccara,et al.  High-resolution full-field optical coherence tomography with a Linnik microscope. , 2002, Applied optics.

[22]  Vincent Borderie,et al.  Full-Field Optical Coherence Tomography of Human Donor and Pathological Corneas , 2015, Current eye research.

[23]  David H Sliney,et al.  Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  P. Garstecki,et al.  In vivo volumetric imaging by crosstalk-free full-field OCT , 2019, Optica.

[25]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[26]  Naoyuki Maeda,et al.  Ultrahigh-resolution imaging of human donor cornea using full-field optical coherence tomography. , 2007, Journal of biomedical optics.

[27]  Maciej Wojtkowski,et al.  Computational aberration correction in spatiotemporal optical coherence (STOC) imaging. , 2020, Optics letters.

[28]  Claude Boccara,et al.  High-resolution in-vivo human retinal imaging using full-field OCT with optical stabilization of axial motion. , 2020, Biomedical optics express.

[29]  Joseph A Izatt,et al.  Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources. , 2010, Optics letters.

[30]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[31]  B R Masters,et al.  Real-time scanning slit confocal microscopy of the in vivo human cornea. , 1994, Applied optics.

[32]  Gesa Franke,et al.  Aberration-free volumetric high-speed imaging of in vivo retina , 2016, Scientific Reports.

[33]  C. Boccara,et al.  Ultrahigh-resolution full-field optical coherence tomography. , 2004, Applied optics.

[34]  Anna Fabijanska,et al.  Segmentation of corneal endothelium images using a U-Net-based convolutional neural network , 2018, Artif. Intell. Medicine.

[35]  Kate Grieve,et al.  Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography. , 2004, Investigative ophthalmology & visual science.

[36]  W. Drexler,et al.  Line-field parallel swept source MHz OCT for structural and functional retinal imaging. , 2015, Biomedical optics express.

[37]  Kristina Irsch,et al.  Real-time non-contact cellular imaging and angiography of human cornea and limbus with common-path full-field/SD OCT , 2020, Nature Communications.

[38]  Kostadinka Bizheva,et al.  250 kHz, 1.5 µm resolution SD-OCT for in-vivo cellular imaging of the human cornea. , 2018, Biomedical optics express.

[39]  Kate Grieve,et al.  In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography. , 2005, Optics express.

[40]  Peter Koch,et al.  Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT. , 2012, Optics express.

[41]  Iwona Gorczynska,et al.  Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera. , 2009, Optics express.

[42]  Maciej Wojtkowski,et al.  Crosstalk-free volumetric in vivo imaging of a human retina with Fourier-domain full-field optical coherence tomography. , 2019, Biomedical optics express.

[43]  Angelika Unterhuber,et al.  Full-field time-encoded frequency-domain optical coherence tomography. , 2006, Optics express.

[44]  R. A. Leitgeb,et al.  En face optical coherence tomography: a technology review [Invited]. , 2019, Biomedical optics express.

[45]  W. Drexler Ultrahigh-resolution optical coherence tomography. , 2004, Journal of biomedical optics.

[46]  Maciej Wojtkowski,et al.  Spectral Optical Coherence Tomography: A Novel Technique for Cornea Imaging , 2006, Cornea.

[47]  Egidijus Auksorius,et al.  Dark-field full-field optical coherence tomography. , 2015, Optics letters.

[48]  Arnaud Dubois,et al.  Focus defect and dispersion mismatch in full-field optical coherence microscopy. , 2017, Applied optics.

[49]  Gesa Franke,et al.  Off-axis reference beam for full-field swept-source OCT and holoscopy. , 2017, Optics express.

[50]  Leopold Schmetterer,et al.  In vivo corneal endothelium imaging using ultrahigh resolution OCT. , 2019, Biomedical optics express.

[51]  Mathias Fink,et al.  Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations. , 2016, Optics letters.

[52]  Kate Grieve,et al.  In vivo high resolution human retinal imaging with wavefront correctionless full-field OCT , 2018 .

[54]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[55]  Leopold Schmetterer,et al.  Anterior segment optical coherence tomography , 2018, Progress in Retinal and Eye Research.