Stability of acyclic multiclass queueing networks

In this paper we study multiclass queueing networks with fluid arrival streams and service processes. Assuming that the arrival rate does not exceed the network capacity, we deduce stability of the network using the tools of ergodic theory. We show that the distributions of the process converge to a unique steady state value and that convergence takes place at a geometric rate under appropriate moment conditions. >

[1]  R. M. Loynes,et al.  The stability of a queue with non-independent inter-arrival and service times , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  J. Azema,et al.  Mesure invariante sur les classes récurrentes des processus de Markov , 1967 .

[3]  P. R. Kumar,et al.  Stable distributed real-time scheduling of flexible manufacturing/assembly/disassembly systems , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[4]  J. R. Perkins,et al.  Stable, distributed, real-time scheduling of flexible manufacturing/assembly/diassembly systems , 1989 .

[5]  K. Sigman The stability of open queueing networks , 1990 .

[6]  P. R. Kumar,et al.  Distributed scheduling based on due dates and buffer priorities , 1991 .

[7]  Rene L. Cruz,et al.  A calculus for network delay, Part I: Network elements in isolation , 1991, IEEE Trans. Inf. Theory.

[8]  Rene L. Cruz,et al.  A calculus for network delay, Part II: Network analysis , 1991, IEEE Trans. Inf. Theory.

[9]  A. A. Borovkov,et al.  STOCHASTICALLY RECURSIVE SEQUENCES AND THEIR GENERALIZATIONS , 1992 .

[10]  S. Meyn,et al.  Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes , 1993, Advances in Applied Probability.

[11]  S. Meyn,et al.  Stability of Markovian processes II: continuous-time processes and sampled chains , 1993, Advances in Applied Probability.

[12]  François Baccelli,et al.  Stability of Jackson-type queueing networks, I , 1993 .

[13]  Joy A. Thomas,et al.  On the stability of open networks: A unified approach by stochastic dominance , 1994, Queueing Syst. Theory Appl..

[14]  R. Tweedie,et al.  Strengthening ergodicity to geometric ergodicity for markov chains , 1994 .

[15]  R. Schassberger,et al.  Ergodicity of a polling network , 1994 .

[16]  Sean P. Meyn,et al.  Stability of Generalized Jackson Networks , 1994 .

[17]  S. Meyn,et al.  Exponential and Uniform Ergodicity of Markov Processes , 1995 .

[18]  J. Dai On Positive Harris Recurrence of Multiclass Queueing Networks: A Unified Approach Via Fluid Limit Models , 1995 .