On the Submillimeter Opacity of Protoplanetary Disks

Solid particles with the composition of interstellar dust and power-law size distribution dn/da ∝ a-p (for a ≤ amax with amax ≳ 3λ and 3 < p < 4) will have submillimeter opacity spectral index β(λ) ≡ d ln κ/d ln ν ≈ (p - 3)βISM, where βISM ≈ 1.7 is the opacity spectral index of interstellar dust material in the Rayleigh limit. For the power-law index p ≈ 3.5, which characterizes interstellar dust and may apply for particles growing by agglomeration in protoplanetary disks, grain growth to sizes a ≳ 3 mm will result in β(1 mm) ≲ 1. Grain growth can naturally account for β ≈ 1 observed for protoplanetary disks, provided that amax ≳ 3λ.

[1]  Jonathan P. Williams,et al.  Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective , 2005, astro-ph/0506187.

[2]  D. Johnstone,et al.  Fourier transform spectroscopy of the submillimetre continuum emission from hot molecular cores , 2005, astro-ph/0505331.

[3]  S. Ida,et al.  Dust Growth and Settling in Protoplanetary Disks and Disk Spectral Energy Distributions. I. Laminar Disks , 2005, astro-ph/0502287.

[4]  C. Dullemond,et al.  Ices in the Edge-on Disk CRBR 2422.8-3423: Spitzer Spectroscopy and Monte Carlo Radiative Transfer Modeling , 2004, astro-ph/0411367.

[5]  C. Dominik,et al.  Dust coagulation in protoplanetary disks: A rapid depletion of small grains , 2004, astro-ph/0412117.

[6]  L. Kewley,et al.  Spitzer Infrared Nearby Galaxies Survey (SINGS) Imaging of NGC 7331: A Panchromatic View of a Ringed Galaxy , 2004 .

[7]  P. Ho,et al.  Submillimeter Array Outflow/Disk Studies in the Massive Star-forming Region IRAS 18089–1732 , 2004, astro-ph/0402505.

[8]  Richard G. Arendt,et al.  Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints , 2003, astro-ph/0312641.

[9]  R. Neri,et al.  A search for evolved dust in Herbig Ae stars , 2003, astro-ph/0311624.

[10]  B. Draine Scattering by Interstellar Dust Grains. II. X-Rays , 2003, astro-ph/0308251.

[11]  J. Hovenier,et al.  UvA-DARE ( Digital Academic Repository ) Shape effects in scattering and absorption by randomly oriented particles small compared to the wavelength , 2003 .

[12]  Robert Jedicke,et al.  The fossilized size distribution of the main asteroid belt , 2003 .

[13]  L. Testi,et al.  Large grains in the disk of CQ Tau , 2003, astro-ph/0303420.

[14]  A. Walsh,et al.  Evidence for a Developing Gap in a 10 Myr Old Protoplanetary Disk , 2002, astro-ph/0201425.

[15]  D. Lamb,et al.  Solar System Objects Observed in the Sloan Digital Sky Survey Commissioning Data , 2001, astro-ph/0105511.

[16]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[17]  L. Hartmann,et al.  Accretion Disks around Young Objects. III. Grain Growth , 2001, astro-ph/0101443.

[18]  B. Draine,et al.  Infrared Emission from Interstellar Dust Ii. the Diffuse Interstellar Medium , 2000 .

[19]  J. Weingartner,et al.  Dust Grain Size Distributions and Extinction in the Milky Way, LMC, and SMC , 2000, astro-ph/0008146.

[20]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[21]  J. Brucato,et al.  Temperature Dependence of the Absorption Coefficient of Cosmic Analog Grains in the Wavelength Range 20 Microns to 2 Millimeters , 1998 .

[22]  E. Bergin,et al.  Carbon Monoxide and Dust Column Densities: The Dust-to-Gas Ratio and Structure of Three Giant Molecular Cloud Cores , 1997 .

[23]  S. Weidenschilling,et al.  The Origin of Comets in the Solar Nebula: A Unified Model , 1997 .

[24]  T. Hunter A Submillimeter Imaging Survey of Ultracompact H ii Regions , 1996 .

[25]  Satoshi Inaba,et al.  Steady-State Size Distribution for the Self-Similar Collision Cascade , 1996 .

[26]  S. Beckwith,et al.  Laboratory Results on Millimeter-Wave Absorption in Silicate Grain Materials at Cryogenic Temperatures , 1996 .

[27]  P. Martin,et al.  The Size Distribution of Interstellar Dust Particles as Determined from Polarization: Spheroids , 1995 .

[28]  K. Miyake,et al.  Effects of Particle Size Distribution on Opacity Curves of Protoplanetary Disks around T Tauri Stars , 1993 .

[29]  S. Malhotra,et al.  On graphite and the 2175 Å extinction profile , 1993 .

[30]  Steven V. W. Beckwith,et al.  Particle Emissivity in Circumstellar Disks , 1991 .

[31]  Eileen V. Ryan,et al.  On collisional disruption - Experimental results and scaling laws , 1990 .

[32]  E. Wright Long-Wavelength Absorption by Fractal Dust Grains , 1987 .

[33]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[34]  On the origin of the grain-size spectrum of interstellar dust , 1980 .

[35]  W. Wiscombe Improved Mie scattering algorithms. , 1980, Applied optics.

[36]  M. A. Bösch Anomalous Absorption in Amorphous Solids at Low Temperature , 1978 .

[37]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[38]  R. Pohl,et al.  THE ANOMALOUS THERMAL PROPERTIES OF GLASSES AT LOW TEMPERATURES * , 1976 .

[39]  P. Aannestad Absorptive properties of silicate core-mantle grains , 1975 .

[40]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .