The global effects of impact-induced seismic activity on fractured asteroid surface morphology

Abstract Impact-induced seismic vibrations have long been suspected of being an important surface modification process on small satellites and asteroids. In this study, we use a series of linked seismic and geomorphic models to investigate the process in detail. We begin by developing a basic theory for the propagation of seismic energy in a highly fractured asteroid, and we use this theory to model the global vibrations experienced on the surface of an asteroid following an impact. These synthetic seismograms are then applied to a model of regolith resting on a slope, and the resulting downslope motion is computed for a full range of impactor sizes. Next, this computed downslope regolith flow is used in a morphological model of impact crater degradation and erasure, showing how topographic erosion accumulates as a function of time and the number of impacts. Finally, these results are applied in a stochastic cratering model for the surface of an Eros-like body (same volume and surface area as the asteroid), with craters formed by impacts and then erased by the effects of superposing craters, ejecta coverage, and seismic shakedown. This simulation shows good agreement with the observed 433 Eros cratering record at a Main Belt exposure age of 400 ± 200 Myr , including the observed paucity of small craters. The lowered equilibrium numbers (loss rate = production rate) for craters less than ∼100 m in diameter is a direct result of seismic erasure, which requires less than a meter of mobilized regolith to reproduce the NEAR observations. This study also points to an upper limit on asteroid size for experiencing global, surface-modifying, seismic effects from individual impacts of about 70–100 km (depending upon asteroid seismic properties). Larger asteroids will experience only localized (regional) seismic effects from individual impacts.

[1]  H. Melosh,et al.  The Stickney Impact of Phobos: A Dynamical Model , 1990 .

[2]  H. Jay Melosh,et al.  Acoustic fluidization: A new geologic process? , 1979 .

[3]  James D. Walker,et al.  Loading sources for seismological investigations of near-Earth objects , 2004 .

[4]  G. Sutton,et al.  Meteoroid impacts recorded by the short-period component of Apollo 14 Lunar Passive Seismic Station , 1974 .

[5]  A. McEwen,et al.  Geology of 243 Ida , 1996 .

[6]  K. Holsapple THE SCALING OF IMPACT PROCESSES IN PLANETARY SCIENCES , 1993 .

[7]  A. McEwen,et al.  Galileo's Encounter with 243 Ida: An Overview of the Imaging Experiment , 1996 .

[8]  J. Veverka,et al.  Collisional History of Gaspra , 1994 .

[9]  W. Hartmann,et al.  The Comparison of Size-Frequency Distributions of Impact Craters and Asteroids and the Planetary Cratering Rate , 2002 .

[10]  H. J. Moore,et al.  Missile Inpacts as Sources of Seismic Energy on the Moon , 1970, Science.

[11]  A. McEwen,et al.  Galileo Encounter with 951 Gaspra: First Pictures of an Asteroid , 1992, Science.

[12]  S. Murchie,et al.  The geology of 433 Eros , 2002 .

[13]  Veverka,et al.  Radio science results during the NEAR-shoemaker spacecraft rendezvous with eros , 2000, Science.

[14]  H. S. Carslow,et al.  Conduction of Heat in Solids, Second Edition , 1986 .

[15]  H. Melosh,et al.  Gravitational Aggregates: Evidence and Evolution , 2002 .

[16]  C. W. Hirt,et al.  SALE: a simplified ALE computer program for fluid flow at all speeds , 1980 .

[17]  Paul G. Richards,et al.  Elementary solutions to Lamb's problem for a point source and their relevance to three-dimensional studies of spontaneous crack propagation , 1979, Bulletin of the Seismological Society of America.

[18]  Nothing Simple About Asteroids , 2004, Science.

[19]  M. Horányi,et al.  Dust transport in photoelectron layers and the formation of dust ponds on Eros , 2005 .

[20]  H. J. Moore,et al.  Standard techniques for presentation and analysis of crater size-frequency data , 1978 .

[21]  J. Head,et al.  Collisional and Dynamical History of Ida , 1996 .

[22]  T. Lay,et al.  Modern Global Seismology , 1995 .

[23]  H. Melosh,et al.  Impact Craters on Asteroids: Does Gravity or Strength Control Their Size? , 1996 .

[24]  B. Pandit,et al.  Anomalous Propagation of Elastic Energy within the Moon , 1970, Nature.

[25]  M. Nafi Toksöz,et al.  Structure of the Moon , 1974 .

[26]  M. Robinson,et al.  The nature of ponded deposits on Eros , 2001, Nature.

[27]  Brazil Nuts on Eros: Size-Sorting of Asteroid Regolith , 2001 .

[28]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[29]  N. Izenberg,et al.  Imaging of Small-Scale Features on 433 Eros from NEAR: Evidence for a Complex Regolith , 2001, Science.

[30]  A. Fujiwara Stickney-forming impact on phobos: crater shape and induced stress distribution , 1991 .

[31]  M. Cintala,et al.  Characteristics of the cratering process on small satellites and asteroids , 1978 .

[32]  Andrew F. Cheng,et al.  Small-Scale Topography of 433 Eros from Laser Altimetry and Imaging , 2000 .

[33]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[34]  D. Britt,et al.  Asteroid Density, Porosity, and Structure , 2002 .

[35]  C. Chapman,et al.  Cratering of planetary satellites. , 1986 .

[36]  E. Kreyszig,et al.  Advanced Engineering Mathematics. , 1974 .

[37]  Patrick Michel,et al.  Dynamics of Eros , 1998 .

[38]  H. Kanamori,et al.  Lamb pulse observed in nature , 1983 .

[39]  W. Bottke,et al.  Asteroidal collision probabilities , 1993 .

[40]  A. Woronow A general cratering-history model and its implications for the lunar highlands , 1978 .

[41]  Y. Nakamura Seismic energy transmission in the lunar surface zone determined from signals generated by movement of Lunar Rovers , 1976 .

[42]  C. Chapman Asteroid collisions, craters, regoliths, and lifetimes , 1978 .

[43]  D. Morrison,et al.  Asteroids: An Exploration Assessment , 1978 .

[44]  Peter H. Schultz,et al.  Interpreting statistics of small lunar craters , 1977 .

[45]  W. Hartmann,et al.  Meteorite Delivery via Yarkovsky Orbital Drift , 1998 .

[46]  Yosio Nakamura,et al.  Passive Seismic Experiment , 1970, Science.

[47]  Randolph L. Kirk,et al.  Eros: Shape, Topography, and Slope Processes , 2002 .

[48]  Richard Greenberg,et al.  Impact-Induced Seismic Activity on Asteroid 433 Eros: A Surface Modification Process , 2004, Science.

[49]  J. Veverka,et al.  Surface Expressions of Structural Features on Eros , 2002 .

[50]  H. Melosh,et al.  ASTEROIDS : SHATTERED BUT NOT DISPERSED , 1997 .

[51]  A. McEwen,et al.  The Geology of Gaspra , 1994 .

[52]  S. Titley Seismic energy as an agent of morphologic modification on the moon , 1966 .

[53]  William H. Press,et al.  Numerical Recipes in Fortran 77 , 1992 .

[54]  Randall W. Jibson,et al.  A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps: An Example from the Los Angeles, California, Area , 1998 .

[55]  D. Gault,et al.  Seismic effects from major basin formations on the moon and mercury , 1975 .

[56]  D. Nash Morphologic Dating of Degraded Normal Fault Scarps , 1980, The Journal of Geology.

[57]  A. McGarr,et al.  Meteoroid impacts as sources of seismicity on the moon , 1969 .

[58]  M. H. Hait,et al.  Origin of the lunar regolith at Tranquillity Base , 1970 .

[59]  B. Tittmann Lunar rock Q in 3000-5000 range achieved in laboratory , 1977 .

[60]  Donald E. Gault,et al.  Mixing of the lunar regolith , 1974 .

[61]  N. Newmark Effects of Earthquakes on Dams and Embankments , 1965 .

[62]  R. Sullivan,et al.  Mechanical and geological effects of impact cratering on Ida , 1996 .

[63]  P. Thomas,et al.  Impact History of Eros: Craters and Boulders , 2002 .

[64]  L. Soderblom A model for small‐impact erosion applied to the lunar surface , 1970 .

[65]  W. Culling,et al.  Analytical Theory of Erosion , 1960, The Journal of Geology.

[66]  P. Lee DUST LEVITATION ON ASTEROIDS , 1996 .

[67]  William E. Dietrich,et al.  Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology , 1999 .

[68]  W. Benz,et al.  Catastrophic Disruptions Revisited , 1999 .

[69]  Clark R. Chapman,et al.  Ponded deposits on asteroid 433 Eros , 2002 .

[70]  R. Greenberg,et al.  The collisional and dynamical evolution of the main-belt and NEA size distributions , 2005 .

[71]  L. Rosenhead Conduction of Heat in Solids , 1947, Nature.

[72]  Zuber,et al.  The shape of 433 eros from the NEAR-shoemaker laser rangefinder , 2000, Science.

[73]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[74]  S. Murchie,et al.  An Estimate of Eros's Porosity and Implications for Internal Structure , 2002 .

[75]  M. Nolan,et al.  Velocity Distributions among Colliding Asteroids , 1994 .

[76]  K. Anderson,et al.  Seismic scattering and shallow structure of the moon in oceanus procellarum , 1974 .

[77]  H. Melosh,et al.  Hydrocode simulations of Chicxulub crater collapse and peak-ring formation , 2002 .