Notch filters for port-Hamiltonian systems
暂无分享,去创建一个
Jacquelien M. A. Scherpen | Arjan van der Schaft | Maarten Steinbuch | Daniel Alonzo Dirksz | D. A. Dirksz | A. Schaft | M. Steinbuch | J. Scherpen
[1] Jacquelien M. A. Scherpen,et al. Power shaping: a new paradigm for stabilization of nonlinear RLC circuits , 2003, IEEE Trans. Autom. Control..
[2] Kazunori Sakurama,et al. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations , 2001, Autom..
[3] M Maarten Steinbuch,et al. Frequency domain based nonlinear feed forward control design for friction compensation , 2012 .
[4] Lorenzo Marconi,et al. Robust design of nonlinear internal models without adaptation , 2012, Autom..
[5] A. M. Stankovic,et al. Towards a dissipativity framework for power system stabilizer design , 1996 .
[6] Gene F. Franklin,et al. Feedback Control of Dynamic Systems , 1986 .
[7] A. Isidori,et al. Semiglobal nonlinear output regulation with adaptive internal model , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).
[8] Stefano Stramigioli,et al. Modeling and Control of Complex Physical Systems - The Port-Hamiltonian Approach , 2014 .
[9] W. Wonham,et al. The internal model principle for linear multivariable regulators , 1975 .
[10] Lorenzo Marconi,et al. Semi-global nonlinear output regulation with adaptive internal model , 2001, IEEE Trans. Autom. Control..
[11] Alberto Isidori,et al. A reduction paradigm for output regulation , 2008 .
[12] Arjan van der Schaft,et al. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems , 2002, Autom..
[13] A. Schaft,et al. Port-controlled Hamiltonian systems : modelling origins and systemtheoretic properties , 1992 .
[14] Wpmh Maurice Heemels,et al. On switched Hamiltonian systems , 2002 .
[15] Arjan van der Schaft,et al. Physical Damping in IDA-PBC Controlled Underactuated Mechanical Systems , 2004, Eur. J. Control.
[16] Christopher I. Byrnes,et al. Nonlinear internal models for output regulation , 2004, IEEE Transactions on Automatic Control.
[17] M Maarten Steinbuch,et al. Advanced motion control , 2003 .
[18] A. Schaft,et al. Port controlled Hamiltonian representation of distributed parameter systems , 2000 .
[19] A. Astolfi. Disturbance Attenuation and H,-Control Via Measurement Feedback in , 1992 .
[20] Weiping Li,et al. Applied Nonlinear Control , 1991 .
[21] Lorenzo Marconi,et al. A reduction paradigm for output regulation , 2007, 2007 European Control Conference (ECC).
[22] A. Isidori,et al. Output regulation of nonlinear systems , 1990 .
[23] Michel Verhaegen,et al. Port-Hamiltonian formulation and analysis of the LuGre friction model , 2008, 2008 47th IEEE Conference on Decision and Control.
[24] A. Isidori,et al. Disturbance attenuation and H/sub infinity /-control via measurement feedback in nonlinear systems , 1992 .
[25] Romeo Ortega,et al. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment , 2002, IEEE Trans. Autom. Control..
[26] J. Willems. Dissipative dynamical systems part I: General theory , 1972 .
[27] Maarten Steinbuch,et al. Advanced Motion Control: An Industrial Perspective , 1998, Eur. J. Control.
[28] T. Sugie,et al. Canonical transformation and stabilization of generalized Hamiltonian systems , 1998 .
[29] A. Isidori,et al. Global robust output regulation for a class of nonlinear systems , 2000 .
[30] R. Ortega. Passivity-based control of Euler-Lagrange systems : mechanical, electrical and electromechanical applications , 1998 .