Notch filters for port-Hamiltonian systems

In this paper a standard notch filter is modeled in the port-Hamiltonian framework. By having such a port-Hamiltonian description it is proven that the notch filter is a passive system. The notch filter can then be interconnected with another (nonlinear) port-Hamiltonian system, while preserving the overall passivity property. By doing so we can combine a frequency-based control method, the notch filter, with the nonlinear control methodology of passivity-based control.

[1]  Jacquelien M. A. Scherpen,et al.  Power shaping: a new paradigm for stabilization of nonlinear RLC circuits , 2003, IEEE Trans. Autom. Control..

[2]  Kazunori Sakurama,et al.  Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations , 2001, Autom..

[3]  M Maarten Steinbuch,et al.  Frequency domain based nonlinear feed forward control design for friction compensation , 2012 .

[4]  Lorenzo Marconi,et al.  Robust design of nonlinear internal models without adaptation , 2012, Autom..

[5]  A. M. Stankovic,et al.  Towards a dissipativity framework for power system stabilizer design , 1996 .

[6]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[7]  A. Isidori,et al.  Semiglobal nonlinear output regulation with adaptive internal model , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[8]  Stefano Stramigioli,et al.  Modeling and Control of Complex Physical Systems - The Port-Hamiltonian Approach , 2014 .

[9]  W. Wonham,et al.  The internal model principle for linear multivariable regulators , 1975 .

[10]  Lorenzo Marconi,et al.  Semi-global nonlinear output regulation with adaptive internal model , 2001, IEEE Trans. Autom. Control..

[11]  Alberto Isidori,et al.  A reduction paradigm for output regulation , 2008 .

[12]  Arjan van der Schaft,et al.  Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems , 2002, Autom..

[13]  A. Schaft,et al.  Port-controlled Hamiltonian systems : modelling origins and systemtheoretic properties , 1992 .

[14]  Wpmh Maurice Heemels,et al.  On switched Hamiltonian systems , 2002 .

[15]  Arjan van der Schaft,et al.  Physical Damping in IDA-PBC Controlled Underactuated Mechanical Systems , 2004, Eur. J. Control.

[16]  Christopher I. Byrnes,et al.  Nonlinear internal models for output regulation , 2004, IEEE Transactions on Automatic Control.

[17]  M Maarten Steinbuch,et al.  Advanced motion control , 2003 .

[18]  A. Schaft,et al.  Port controlled Hamiltonian representation of distributed parameter systems , 2000 .

[19]  A. Astolfi Disturbance Attenuation and H,-Control Via Measurement Feedback in , 1992 .

[20]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[21]  Lorenzo Marconi,et al.  A reduction paradigm for output regulation , 2007, 2007 European Control Conference (ECC).

[22]  A. Isidori,et al.  Output regulation of nonlinear systems , 1990 .

[23]  Michel Verhaegen,et al.  Port-Hamiltonian formulation and analysis of the LuGre friction model , 2008, 2008 47th IEEE Conference on Decision and Control.

[24]  A. Isidori,et al.  Disturbance attenuation and H/sub infinity /-control via measurement feedback in nonlinear systems , 1992 .

[25]  Romeo Ortega,et al.  Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment , 2002, IEEE Trans. Autom. Control..

[26]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[27]  Maarten Steinbuch,et al.  Advanced Motion Control: An Industrial Perspective , 1998, Eur. J. Control.

[28]  T. Sugie,et al.  Canonical transformation and stabilization of generalized Hamiltonian systems , 1998 .

[29]  A. Isidori,et al.  Global robust output regulation for a class of nonlinear systems , 2000 .

[30]  R. Ortega Passivity-based control of Euler-Lagrange systems : mechanical, electrical and electromechanical applications , 1998 .