An INAR model with discrete Laplace marginal distributions

In this paper we rst introduce a new thinning operator and derive some of its properties. Then, by using the thinning operator we dene a new stationary time series with discrete Laplace marginal distributions with either positive or negative lag-one autocorrelation. We show that this time series is distributed as the dierence of two independent NGINAR(1) time series and, using this fact, we discuss some of its properties. The Yule-Walker estimators for the unknown parameters are derived and their asymptotic properties are discussed.

[1]  Miroslav M. Ristic,et al.  A bivariate INAR(1) time series model with geometric marginals , 2012, Appl. Math. Lett..

[2]  L. Truquet,et al.  On the quasi-likelihood estimation for random coefficient autoregressions , 2012 .

[3]  R. Keith Freeland,et al.  True integer value time series , 2010 .

[4]  Fukang Zhu,et al.  Inference for INAR(p) processes with signed generalized power series thinning operator , 2010 .

[5]  Dehui Wang,et al.  Generalized RCINAR(p) Process with Signed Thinning Operator , 2010, Commun. Stat. Simul. Comput..

[6]  Dehui Wang,et al.  Generalized RCINAR(1) Process with Signed Thinning Operator , 2012 .

[7]  Isabel Silva,et al.  Asymptotic distribution of the Yule–Walker estimator for INAR(p) processes , 2006 .

[8]  Christophe Chesneau,et al.  A Parametric Study for the First-Order Signed Integer-Valued Autoregressive Process , 2012 .

[9]  Tomasz J. Kozubowski,et al.  A Skew Laplace Distribution on Integers , 2006 .

[10]  Somnath Datta,et al.  Inference for pth‐order random coefficient integer‐valued autoregressive processes , 2006 .

[11]  Alain Latour,et al.  An integer-valued bilinear type model , 2009 .

[12]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[13]  Miroslav M. Ristic,et al.  A combined geometric INAR(p) model based on negative binomial thinning , 2012, Math. Comput. Model..

[14]  Hassan S. Bakouch,et al.  A new geometric first-order integer-valued autoregressive (NGINAR(1)) process , 2009 .

[15]  A skew true INAR(1) process with application , 2013, 1306.0156.

[16]  Yousung Park,et al.  A non-stationary integer-valued autoregressive model , 2008 .

[17]  A. Nastic,et al.  A mixed INAR(p) model , 2012 .

[18]  Li Yuan,et al.  THE INTEGER‐VALUED AUTOREGRESSIVE (INAR(p)) MODEL , 1991 .

[19]  Tomasz J. Kozubowski,et al.  A discrete analogue of the Laplace distribution , 2006 .

[20]  M. Kachour,et al.  A p‐Order signed integer‐valued autoregressive (SINAR(p)) model , 2011 .