Study of Precipitates in Oxide Dispersion-Strengthened Steels by SANS, TEM, and APT

In this work, the nanostructure of oxide dispersion-strengthened steels was studied by small-angle neutron scattering (SANS), transmission electron microscopy (TEM), and atom probe tomography (APT). The steels under study have different alloying systems differing in their contents of Cr, V, Ti, Al, and Zr. The methods of local analysis of TEM and APT revealed a significant number of nanosized oxide particles and clusters. Their sizes, number densities, and compositions were determined. A calculation of hardness from SANS data collected without an external magnetic field, or under a 1.1 T field, showed good agreement with the microhardness of the materials. The importance of taking into account two types of inclusions (oxides and clusters) and both nuclear and magnetic scattering was shown by the analysis of the scattering data.

[1]  S. Rogozhkin,et al.  Study of Nanostructure of Oxide Dispersion-Strengthened Steels by Small-Angle X-Ray Scattering , 2022, Physics of Atomic Nuclei.

[2]  S. Kondo,et al.  Radiation tolerance of alumina scale formed on FeCrAl ODS ferritic steel , 2021, Nuclear Materials and Energy.

[3]  D. Simeone,et al.  Nano-Structured Materials under Irradiation: Oxide Dispersion-Strengthened Steels , 2021, Nanomaterials.

[4]  M. Hermans,et al.  Characterisation of the influence of vanadium and tantalum on yttrium-based nano-oxides in ODS Eurofer steel , 2021, Materials Characterization.

[5]  L. Almasy New Measurement Control Software on the Yellow Submarine SANS Instrument at the Budapest Neutron Centre , 2021, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques.

[6]  A. Vasiliev,et al.  Comprehensive Analysis of Nanostructure of Oxide Dispersion Strengthened Steels as Prospective Materials for Nuclear Reactors , 2020, Physics of Atomic Nuclei.

[7]  R. Lindau,et al.  Small-angle neutron scattering (SANS) characterization of 13.5 Cr oxide dispersion strengthened ferritic steel for fusion applications , 2020 .

[8]  P. Dou,et al.  Effects of contents of Al, Zr and Ti on oxide particles in Fe–15Cr–2W–0.35Y2O3 ODS steels , 2020 .

[9]  Jin Gao,et al.  Assessment of phase stability of oxide particles in different types of 15Cr-ODS ferritic steels under 6.4 MeV Fe ion irradiation at 200 °C , 2020 .

[10]  Ivan Titov,et al.  Magnetic Guinier law , 2019, IUCrJ.

[11]  S. Ukai,et al.  Precipitation of Oxide Particles in Oxide Dispersion Strengthened (ODS) Ferritic Steels , 2018, MATERIALS TRANSACTIONS.

[12]  J. Fu,et al.  The time-of-flight Small-Angle Neutron Spectrometer at China Spallation Neutron Source , 2018 .

[13]  A. Kimura,et al.  Growth of oxide particles in FeCrAl- oxide dispersion strengthened steels at high temperature , 2017 .

[14]  S. Rogozhkin,et al.  An atom probe tomography prototype with laser evaporation , 2017 .

[15]  A. Muñoz,et al.  SANS characterization of particle dispersions in W-Ti and W-V alloys , 2016 .

[16]  A. Möslang,et al.  Nanostructure evolution in ODS steels under ion irradiation , 2016 .

[17]  J. Wharry,et al.  The Effects of Oxide Evolution on Mechanical Properties in Proton- and Neutron-Irradiated Fe-9%Cr ODS Steel , 2016 .

[18]  F. Cousin Small angle neutron scattering , 2015 .

[19]  C. García-Rosales,et al.  Microstructural characterization of ODS ferritic steels at different processing stages , 2015 .

[20]  D. Fabrègue,et al.  Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy , 2015 .

[21]  J. Kim,et al.  Effects of cryomilling on the microstructures and high temperature mechanical properties of oxide dispersion strengthened steel , 2015 .

[22]  H. Sandim,et al.  The influence of thermomechanical processing on the microstructure and mechanical properties of 13.5Cr ODS steels , 2013 .

[23]  A. Möslang,et al.  XAFS and TEM studies of the structural evolution of yttrium-enriched oxides in nanostructured ferritic alloys fabricated by a powder metallurgy process , 2012 .

[24]  Y. Carlan,et al.  Small angle neutron scattering study of martensitic/ferritic ODS alloys , 2012 .

[25]  Philippe Dubuisson,et al.  ODS Ferritic/martensitic alloys for Sodium Fast Reactor fuel pin cladding , 2012 .

[26]  M. Nastasi,et al.  On the structure and chemistry of complex oxide nanofeatures in nanostructured ferritic alloy U14YWT , 2012 .

[27]  A. Deschamps,et al.  Precipitate characterisation in metallic systems by small-angle X-ray or neutron scattering , 2012 .

[28]  T. Okuda,et al.  Development of Oxide Dispersion Strengthened Ferritic Steels for FBR Core Application, (I) , 2012 .

[29]  M. Rieth,et al.  Review on the EFDA work programme on nano-structured ODS RAF steels , 2011 .

[30]  J. B. Correia,et al.  Microstructural characterization of the ODS Eurofer 97 EU-batch , 2011 .

[31]  Frank Bergner,et al.  Microstructure of oxide dispersion strengthened Eurofer and iron–chromium alloys investigated by means of small-angle neutron scattering and transmission electron microscopy , 2011 .

[32]  A. Möslang,et al.  Recent applications of small-angle neutron scattering in the characterization of irradiated steels for nuclear technologies , 2011 .

[33]  Baptiste Gault,et al.  Influence of surface migration on the spatial resolution of pulsed laser atom probe tomography , 2010 .

[34]  Alfred Cerezo,et al.  Nanoscale characterisation of ODS–Eurofer 97 steel: An atom-probe tomography study , 2010 .

[35]  J. Kuntz,et al.  HRTEM study of oxide nanoparticles in K3-ODS ferritic steel developed for radiation tolerance , 2009 .

[36]  H. Kitazawa,et al.  A new method for the quantitative analysis of the scale and composition of nanosized oxide in 9Cr-ODS steel , 2009 .

[37]  N. Baluc,et al.  Development and characterisation of a new ODS ferritic steel for fusion reactor application , 2009 .

[38]  Philippe Dubuisson,et al.  CEA developments of new ferritic ODS alloys for nuclear applications , 2009 .

[39]  Michael Klimenkov,et al.  New insights into the structure of ODS particles in the ODS-Eurofer alloy , 2009 .

[40]  Pete R. Jemian,et al.  Irena: tool suite for modeling and analysis of small‐angle scattering , 2009 .

[41]  A. Kimura,et al.  High Burnup Fuel Cladding Materials R&D for Advanced Nuclear Systems , 2007 .

[42]  E. Diegele,et al.  Present development status of EUROFER and ODS-EUROFER for application in blanket concepts , 2005 .

[43]  John P. Shingledecker,et al.  Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys , 2005 .

[44]  K. F. Russell,et al.  Nanometer scale precipitation in ferritic MA/ODS alloy MA957 , 2004 .

[45]  A. Möslang,et al.  TEM characterization of structure and composition of nanosized ODS particles in reduced activation ferritic martensitic steels , 2004 .

[46]  Edward A. Kenik,et al.  Atom probe tomography of nanoscale particles in ODS ferritic alloys , 2003 .

[47]  Shigeharu Ukai,et al.  Perspective of ODS alloys application in nuclear environments , 2002 .

[48]  Hideharu Nakashima,et al.  Characterization of High Temperature Creep Properties in Recrystallized 12Cr-ODS Ferritic Steel Claddings , 2002 .

[49]  V. Shalaev,et al.  Radiation resistance and thermal creep of ODS ferritic steels , 2001 .

[50]  T. Beatty,et al.  Progress in the Utilization of an Oxide-Dispersion-Strengthened Alloy for Small Engine Turbine Blades , 1984 .

[51]  C. Trautmann,et al.  TEM analysis of radiation effects in ODS steels induced by swift heavy ions , 2021 .

[52]  T. Stan,et al.  Nano-Oxide Dispersion-Strengthened Steels , 2019, Structural Alloys for Nuclear Energy Applications.

[53]  Y. Carlan,et al.  Oxide dispersion-strengthened/ferrite-martensite steels as core materials for Generation IV nuclear reactors , 2017 .

[54]  T. Fujisawa,et al.  TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition , 2014 .

[55]  J. Yeom,et al.  Temperature dependence of strengthening mechanisms in the nanostructured ferritic alloy 14YWT: Part II—Mechanistic models and predictions , 2013 .

[56]  G. R. Odette,et al.  On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys , 2009 .